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We study the large deviations statistics of the intensive work done by changing globally a control
parameter in a thermally isolated quantum many-body system. We show that, upon approaching
a critical point, large deviations well below the mean work display universal features related to the
critical Casimir effect in the corresponding classical system. Large deviations well above the mean
are, instead, of quantum nature and not captured by the quantum-to-classical correspondence. For
a bosonic system we show that in this latter regime a transition from exponential to power-law
statistics, analogous to the equilibrium Bose-Einstein condensation, may occur depending on the
parameters of the quench and on the spatial dimensionality.

PACS numbers:

Introduction – Recent experimental progresses in the
physics of trapped ultracold atomic gases have stimu-
lated a growing interest in the non-equilibrium behavior
of thermally isolated quantum many-body systems [1]. A
number of aspects are presently being investigated exper-
imentally, ranging from the propagation of correlations
after quenches [2] to relaxation and pre-thermalization
inferred from the statistical fluctuations of the interfer-
ence contrast of split condensates [3]. On the theoreti-
cal side, a compelling issue under investigation is that of
the role played by universality in the non-equilibrium dy-
namics [1], since predictions independent of microscopic
details make the comparison with experiments a partic-
ularly stringent test. Universal behavior can be investi-
gated by studying either the time dependence of correla-
tion functions [4, 5], in particular close to criticality, or
their statistical fluctuations [6]. In this context, a number
of studies have focused on macroscopic, thermodynamic
variables such as work [7–12] and entropy [13], exploring
the emergence of universality in their statistical fluctua-
tions.

Statistical fluctuations are known to provide in-
sight into the physics of classical equilibrium and non-
equilibrium systems [14]. The statistics of macroscopic
extensive variables exhibits a first, obvious form of
universality associated to typical, "small" fluctuations,
which is however rather insensitive to the underlying
properties of the system [14]. Indeed, as the mean of
a generic extensive quantityWN (e.g., the magnetization
in a spin system) grows proportionally to the number N
of degrees of freedom, the one of the associated inten-
sive variable wN ≡ WN/N (i.e., the magnetization per
unit volume) approaches a finite value w̄. The central
limit theorem (when applicable) suggests that the typi-
cal fluctuations of wN are suppressed ∼ 1/N1/2 and have
a Gaussian distribution around w̄. On the other hand,
large fluctuations, though rare, are capable of probing the

specific details of the physical system [14] and they might
provide valuable information on its universal behavior.
In order for a large fluctuation to occur, an extensively
large number of microscopic fluctuating variables (i.e.,
the spin, in our example) has to deviate significantly from
their corresponding means and this happens with a prob-
ability which is exponentially small in the size N . Ac-
cordingly, for large N , one expects wN to be distributed
according to a probability density p(w) ∼ exp[−NI(w)],
where the so-called rate function I(w) is non-negative,
vanishes for w = w̄, and characterizes the statistics of
both large deviations and Gaussian fluctuations.

Here we show that the statistics of large deviations of
the intensive work w done during a global quench of a
thermally isolated quantum many-body system provides
insight into its universal properties. For a global quench
one heuristically expects p(w) to feature a prominent
Gaussian peak centered at a finite mean w̄. By focus-
ing on the tails of this distribution, we demonstrate that
there is a clear distinction between large deviations well
below (w � w̄) and well above (w � w̄) the mean. The
former are determined by the excess free energy fex of the
d+ 1 dimensional classical correspondent in a film [5, 9]
and acquire universal features close to a possible critical
point. The latter, instead, are genuinely quantum fea-
tures, beyond the quantum-to-classical correspondence,
which may, however, maintain some tracts of universal-
ity. Our analysis encompasses as examples the cases of
quenches in the quantum Ising chain [7] and in a free
bosonic system [15]. In addition, we show that, de-
pending on the space dimensionality, the large deviation
statistics of bosonic systems displays a so-called conden-
sation transition (see, e.g., Ref. [16]), analogous to the
Bose-Einstein condensation.

Statistics of the work – Consider a quantum system
with N interacting degrees of freedom and Hamiltonian
H(g). The extensive work WN performed on the sys-
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tem during the quench g0 → g is determined by the
initial state, typically the ground state |Ψg0

0 〉 of H(g0),
and by the eigenvalues Egn≥0 and eigenvectors |Ψg

n〉 of
the post-quench Hamiltonian H(g). In particular, WN is
a stochastic variable with probability density [17, 18]

p(WN ) =
∑
n≥0

|〈Ψg
n|Ψ

g0
0 〉|2δ(WN − [Egn − E

g0
0 ]), (1)

where Eg0 indicates generically the extensive ground-state
energy of H(g). As p vanishes identically for WN below
Eg0 −E

g0
0 , we referWN to this threshold so thatWN ≥ 0.

The probability p(WN ) can be conveniently studied via
its moment generating function

G(s) ≡ 〈e−sWN 〉, (2)

which, for N →∞, exists in the complex half-plane con-
taining Re s ≥ 0 (with possible zeros, see, e.g., Ref. [11]).
For later purposes, we distinguish here a class A of sys-
tems in which WN for large but finite N cannot exceed
a certain extensive threshold NwM from the class B, en-
compassing most of the real systems, within which WN

can assume arbitrarily large values. Generically, in class
A, G(s) is defined for all s ∈ R with G(s) ' e−sNwM

for s→ −∞, whereas in class B, G(s) is defined only for
s > −s̄ < 0 with a generic singularity in its derivative at
−s̄. The quantum Ising chain in a transverse field and the
free bosonic field belong to classes A and B, respectively.

The quantum to classical correspondence allows us to
interpret the moment generating function G(s) for s > 0
as the partition function of a classical system in a film
geometry [9]. Indeed, Eq. (1) implies

G(s) = 〈Ψg0
0 |e−s[H(g)−Eg

0 ]|Ψg0
0 〉, (3)

where 〈Ψg0
0 |e−sH(g)|Ψg0

0 〉 ≡ ZN×s is in fact such a par-
tition function of the classical d + 1-dimensional system
with transfer matrix e−H(g) corresponding to the quan-
tum Hamiltonian H(g), in a film geometry with trans-
verse "surface" areaN , "thickness" s and equal boundary
conditions set by |Ψg0

0 〉. On the basis of ZN×s one natu-
rally defines the free energy FN×s ≡ − lnZN×s per kBT ,
where T is the temperature of the corresponding classi-
cal system, which depends on the parameters of H(g). In
terms of the classical system, the variable s in Eq. (2) is
the distance between the two confining surfaces which we
assume to have a large transverse area N . Upon increas-
ing s, the free energy density per unit area f decomposes
in decreasing powers of s as [20]

f ≡ N−1FN×s ' sfb + 2fs + corr., (4)

where fb = limN,s→∞ FN×s/(Ns) is the bulk free en-
ergy density and fs is the surface free energy density,
i.e., the energy cost for introducing separately each sin-
gle boundary into the otherwise bulk system. The cor-
rections "corr." in Eq. (4) vanish for s → ∞. In order

FIG. 1: (a) Sketch of the excess free energy density fex(s)
and (b) of the corresponding rate function I(w) for classes A
(blue) and B (red) discussed in the main text. The gray area
highlights the range of variables for which fex does not have
a thermodynamic interpretation.

to separate the effects of confinement from the bulk be-
havior, one usually introduces the so-called excess free
energy density per unit area fex ≡ f −sfb, which plays a
fundamental role in what follows and becomes indepen-
dent of N in the limit of large N considered hereafter.
In terms of the quantum system, one finds from Eqs. (3)
and (4), that fb = Eg0/N , fs = −(ln |〈Ψg0

0 |Ψ
g
0〉|)/N [9]

and therefore

G(s) = e−Nfex(s). (5)

For s < 0, fex is defined in terms ofG(s) by this equations
and it lacks its thermodynamic interpretation.
Large deviations and universality – Equation (5) is

crucial for understanding the emergence of universality
in the large deviations statistics of the intensive work
wN = WN/N . In fact, its distribution p(w) for N → ∞
can be determined by a saddle-point approximation of
the inverse Laplace transform of G(s), which actually
provides a heuristic derivation of the Gärtner-Ellis theo-
rem [14]. In particular, Eq. (5) implies that p(w) has the
form ∼ exp[−NI(w)], where the rate function I(w) is
the Legendre-Fenchel transform of fex(s) (and viceversa,
under certain assumptions [14])

I(w) = − inf
s∈R
{sw − fex(s)} , (6)

in which the infimum is taken within the domain D of def-
inition of fex(s) and G(s). Here we assume that f ′ex(s) is
continuous inside D, i.e., that no first-order phase tran-
sitions occur in the system.

The generic features of p(w) can now be inferred from
Eqs. (5) and (6). First of all note that the excess free
energy is such that fex(0) = 0 and f ′ex(0) = w̄. Most
importantly fex(s) is a concave function of s [14] which
approaches 2fs for s→ +∞. Figure 1 provides a sketch
of fex(s) and the corresponding I(s) for the two classes
A and B introduced above. The last two properties im-
ply the existence of a threshold in p(w): the infimum in
Eq. (6) for w < 0 is −∞ and consequently p(w < 0) = 0.
The behavior of I(w) close to the threshold w & 0, in-
stead, is determined by the one of fex(s) for s → +∞
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and in particular I(0) = 2fs > 0, while the approach to
it is determined by the corrections fex − 2fs in Eq. (4).

The universality of these finite-size corrections close to
critical points [19] carries over into the large deviation
statistics of p(w) for w � w̄. Indeed, if the post-quench
Hamiltonian H(g) is close to a quantum critical point the
finite-size corrections fex−2fs to the free energy density
of the (near-critical) classical d + 1-dimensional system,
which are responsible for the so-called critical Casimir
effect [19], take the universal scaling form s−dΘ(s/ξ) for
s � a, where ξ � a is the correlation length and a
some microscopic length scale. The scaling function Θ
is universal in the sense of critical phenomena [19], as
it depends only on the universality class of the classi-
cal critical point. In addition, due to the presence of
the boundaries, Θ depends on their surface universality
class [21] or, equivalently, on which among the few ef-
fective boundary (i.e., initial) states {|Ψ∗i 〉}i, |Ψ

g0
0 〉 flows

to as the critical point is approached. Once the scaling
function Θ is known, the rate function is calculated via
Eq. (6). In particular, if the post-quench Hamiltonian is
critical, then ξ =∞ and

I(w . ∆) = 2fs −
d+ 1

d
∆
(w

∆

)d/(d+1)

+ . . . (7)

with ∆ = d|Θ(0)|. While fs and the possible correc-
tions depend on the specific parameters of the initial
state, the leading dependence of I(w) on w is univer-
sal and non-analytic. In the case of finite but large ξ,
I(w) takes the scaling form I(w) = 2fs + ξ−dϑ(wξd+1),
where ϑ(y) is the Legendre-Fenchel transform of x−dΘ(x)
(and viceversa, see Eq. (6)). Note that ϑ is as univer-
sal as Θ and the latter can be inferred from the former.
For w � ξ−(d+1), the approach to 2fs is eventually con-
trolled by Θ(x� 1) = Cxae−bx where the universal con-
stants a, b, and C depend, along with Θ, on the bulk
and surface universality class of the transition, and they
are known for a variety of universality classes [19] (e.g.,
a = −1/2, b = 2 for a quench of the quantum Ising
chain within the same phase [9]). In this case, one finds
I(w � ξ−(d+1)) ' 2fs − (ξ/b)w lnw−1 but with signif-
icant logarithmic corrections. Note that the universal
edge singularities of the extensive work WN discussed in
Ref. [9] collapse onto the threshold when studied in terms
of the intensive work wN .

In order to illustrate the discussion above we focus on
a free bosonic theory described by a Hamiltonian diago-
nalizable in independent momentum modes

H(m) =

∫
ddk

(2π)d

(
1

2
πkπ−k +

1

2
ω2
kφkφ−k

)
, (8)

where [φk, πk′ ] = iδk,k′ and the integral runs over the first
Brillouin zone |ki| < π. We assume a relativistic disper-
sion relation ωk(m) =

√
k2 +m2 and consider quenches

of the mass from m0 to m [4, 15]. H(m) captures the

low-energy properties of a number of physical systems,
including the ideal harmonic chain, interacting fermions
and bosons in one dimension [23], and it models the rel-
ative phase fluctuations of split one-dimensional conden-
sates [3]. H(m) has a critical point at m = 0 and the cor-
responding classical theory is that of a Gaussian field ϕ in
d+1 spatial dimensions and massm. The quench is char-
acterized by λk ≡ [ωk(m0) − ωk(m)]/[ωk(m0) + ωk(m)]
and from Eqs. (1), (2), and (5) one finds [15]

fex(s) =
1

2

∫
ddk

(2π)d
ln

[
1− λ2

ke−2ωk(m)s

1− λ2
k

]
, (9)

which is defined for s > −s̄ = supk(ln |λk|)/ωk(m) and,
as anticipated, belongs to class B. This fex can be de-
composed as in Eq. (4) and upon approaching the critical
pointm = 0, i.e., for sufficiently large ξ = m−1 and s, the
correction fex(s)− 2fs takes the (m0-independent) scal-
ing form s−dΘO(s/ξ) where ΘO(x) is the scaling function
of the critical Casimir effect for the classical field ϕ with
boundaries belonging to the so-called ordinary surface
universality class [21], corresponding to Dirichlet bound-
ary conditions for ϕ. ΘO can be read, e.g., in Eq. (6.6)
of Ref. [22]. Accordingly, upon approaching the critical
point, the ground state |Ψm0

0 〉 of H(m0) flows towards
the fixed-point state |Ψ∗O〉 corresponding to this surface
universality class. However, as s decreases, fex(s) − 2fs
calculated from Eq. (9) is no longer independent of m0

and corrections to the critical Casimir term arise. These
corrections are partly but effectively accounted for by
changing s 7→ s+2`ext in the previous scaling form, where
the so-called extrapolation length `ext [21] takes here the
value m−1

0 . Effectively, the fixed-point Dirichlet bound-
ary condition on ϕ is realized at surfaces located outside
the film at a distance `ext from its boundaries, resulting
in an effective film thickness s + 2`ext [4, 5, 21]. This
correction is unnecessary for s, ξ � `ext, while is increas-
ingly important as ξ, s, orm0 decrease. Figure 2 presents
the rate function I(w) (solid line) in d = 1 for a quench
from a non-critical to the critical point. In panel (a)
the vertical dashed line indicates the mean work w̄. The
dashed curve, instead, provides the quadratic approxima-
tion of I(w) around w = w̄, which describes the Gaussian
distribution of the small fluctuations. While additional
features of I(w) are rationalized further below, panel (b)
focuses on the region of small w, where universality is ex-
pected to emerge. The dash-dotted line corresponds to
Eq. (7), with ΘO(0) = −Γ(d)ζ(d + 1)/[(16π)d/2Γ(d/2)]
[22]. This universal behavior sets in rather close to the
threshold. However, the agreement between I(w) and
Eq. (7) extends to a wider range by accounting for the
correction due to `ext (dashed curve). The features dis-
played in Fig. 2 for m = 0 carries over to the case
m � m0, which requires the knowledge of the full scal-
ing function ΘO(x). For a fixed value of m, instead, the
corrections to the scaling behavior due to `ext increase
upon decreasing m0 and eventually, after crossing the
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FIG. 2: Rate function I(w) (solid line) of the work done on the
lattice free bosonic theory in d = 1 and unit lattice spacing,
for a quench from m0 = 20 to the critical point. In panel (a)
the dashed curve corresponds to the Gaussian distribution of
small fluctuations around 〈w〉 = w̄. In panel (b), the dash-
dotted curve is the prediction of Eq. (7) while the dashed
curve accounts also for a non-vanishing `ext.

line m = m0 of no quench, they lead to a change in the
effective boundary state [5, 9] for m0 → 0.
Quantum regime and condensation – Let us now con-

sider the case of large work w � w̄. Upon increasing
w further away from the threshold, the value s∗(w) of
s for which the infimum in Eq. (6) is attained — and
which satisfies f ′ex(s∗(w)) = w — decreases and so does
the thickness of the corresponding film. The behavior
of such a film is expected to become increasingly dom-
inated by its microscopic details, with a generic lack of
universality even close to the critical point. Correspond-
ingly I decreases because I ′(w) = −s∗(w). For w = w̄,
s∗ = 0 and I(w = w̄) vanishes, while it grows again
for w > w̄, with s∗(w) < 0 (see Fig. 1). The rate
function for w > w̄ is thus determined by fex(s) for
s < 0 ("negative" film thickness), which lacks a thermo-
dynamic interpretation because the quantum-to-classical
correspondence does not hold in this case. The qualita-
tive behavior of I(w > w̄) depends crucially on the class
the system belongs to. In Fig. 1 we report a sketch of
(a) fex(s) and (b) the associated rate function I corre-
sponding to classes A and B discussed above and char-
acterized by (A) a bound (e.g., the quantum Ising chain)
or (B) an unbound spectrum (e.g., free bosonic theory).
In particular, in case A, I(w) diverges upon approach-
ing wM , with I(w > wM ) = +∞ as required by the
fact that p(w) vanishes above the intensive threshold
wM . In case B, instead, I(w → ∞) ' s̄w and therefore
p(w � w̄) ∼ e−Ns̄w. This is seen in Fig. 2(a), though the
asymptotic linear behavior for w � 1, with slope s̄ (indi-
cated by the dashed line) is actually approached only for
rather large values of w. In general, s̄ is system-specific
and depends on the parameters of the quench.

Even though the emergence of universality is appar-
ently limited to w � w̄, systems belonging to class B
might display unexpected universal properties in the fully

quantum regime w > w̄. Indeed, the statistics of the
work done on the free bosonic theory in Eq. (8) displays,
for m0 → 0, a behavior analogous to the Bose-Einstein
condensation of the ideal gas in the grand canonical en-
semble. This implies a transition in the large deviation
statistics for w > w̄ from exponential to algebraic. In
fact, we note that the excess free energy fex(s) in Eq. (9)
has the same form as half the scaled cumulant generat-
ing function ψ(s) of the fluctuations of the spatial den-
sity ρV of ideal Bose particles (of mass mB) within a
large region of volume V . At equilibrium in an ensem-
ble with chemical potential µ ≤ 0 (in units of tempera-
ture β−1) one finds ψ(s) =

∫
ddk

(2π)d
ln
(

1−Λke−s

1−Λk

)
, where

Λk = e−βεk+µ with εk = ~2k2/(2mB) and the integral is
over Rd. Accordingly the plot of ψ(s) has the form B in
Fig. 1(a), with s̄ = −µ. For the ideal Bose gas, the con-
densation occurs as µ → µc = 0: the asymptotic slope
s̄ = −µ of the rate function I(ρ > ρ̄) vanishes together
with the function itself (see Fig. 1(b)). The mean value
ρ̄ = 〈ρ〉 = ψ′(0) above which this happens is the critical
density for condensation ρc = l−dζ(d/2) [24], which is fi-
nite only for d > dc = 2, where l ≡ (2πβ~2/mB)1/2 is the
thermal wavelength. I vanishes for ρ > ρc because the
probability p(ρ) acquires an algebraic dependence on ρ—
due to the contributions of fluctuations in single-particle
states with small k — and indeed the momenta 〈(ρ− ρ̄)n〉
with n ≥ d/2 diverge as µ→ µc; e.g., 〈(∆ρ)2〉 ∝ (−µ)−α

where α = 2− d/2 for d < 4.
For the statistics of the work, m0 plays a role similar

to µ, although the occupation of the energy levels is de-
termined by the non-thermal distribution generated by
the quench and not by the Bose statistics. In fact, both
m0 and µ determine the k-dependence of λ2

k'0 and Λk'0,
respectively, on which the onset of the condensation de-
pends. In the case of the intensive work,m0 is the control
parameter: for m0 → 0, 〈w〉 is finite for d > d′c = 1 with
a corresponding "critical value" wc(m). The emergence
of d′c 6= dc is due to the fact that the dependence of λ2

k'0

on k crosses over from quadratic for m0 6= 0 to linear for
m0 = 0. Analogous crossover occurs in the condensation
of an ideal Bose gas with relativistic dispersion [25]. The
rate function I(w) vanishes identically for w > wc and
p(w) acquires an algebraic dependence on w because of
the slow asymptotic decay of the probability distribution
of the work done on modes with small k, which are mildly
confined in the initial state with m0 → 0. As a result,
moments 〈(w−w̄)n〉 with n ≥ d diverge in this limit with,
e.g., 〈(∆w)2〉 ∝ ln(m/m0) in d = 2.
Conclusions – We discussed the qualitative features of

the large deviation statistics of the work done during a
quantum quench, highlighting the emergence of univer-
sality and, for bosonic systems, of a non-thermal con-
densation transition. Even though large fluctuations are
exponentially rare as the system size increases, the value
of the rate function I(0) can be reduced by a suitable
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choice of the quench parameters, making them observ-
able by a post-selection of experimental data.
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