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When a DNA molecule is stretched, the zero-force correlation length for its bending fluctuations –
the persistence length A – bifurcates into two different correlation lengths – the shorter “longitudi-
nal” correlation length ξ‖(f) and the longer “transverse” correlation length ξ⊥(f). In the high-force

limit, ξ‖(f) = ξ⊥(f)/2 =
√

kBTA/f/2. When DNA-bending proteins bind to the DNA molecule,
there is an effective interaction between the protein-generated bends mediated by DNA elasticity
and bending fluctuations. Surprisingly, the range of this interaction is not the longest correlation
length associated with transverse fluctuations of the tangent vector along the polymer, but instead
is the second longest longitudinal correlation length ξ‖(f, µ). The effect arises from the protein-bend
contribution to the Hamiltonian having an axial rotational symmetry which eliminates its coupling
to the transverse fluctuations.

PACS numbers: 82.35.Lr, 87.15.-v, 87.15.kj, 05.50.+q

In living cells, binding of proteins to DNA controls
gene expression and packaging of the genome [1–3], re-
quiring DNA-binding proteins to communicate and co-
operate over a wide range of length scales. Many DNA-
binding proteins distort the double helix, which has led
to development of micromechanical methods for ana-
lyis of protein-DNA interactions [4–7]. Notably, ten-
sion along DNA molecules can induce cooperative inter-
actions between distant DNA-bending proteins [8–10].
Numerical analysis of a semiflexible “worm-like chain”
(WLC) showed the force-generated interaction range be-
tween two quenched bends (corresponding to bound pro-
teins) to be ξ(f) ≈

√

A/βf/2 [10], in the high-force range
f > kBT/A ≈ 0.1 pN. The dominant (longest) correla-
tion length for the WLC is that for bending fluctuations,
ξ⊥(f) ≈

√

A/βf [11]. Surprisingly, the protein-induced
bends have an interaction range exactly half of ξ⊥(f).
Here we show that this arises from the rotational symme-
try of the part of the energy describing the protein-DNA
interaction. We will illustrate this for a specific model,
but we will also argue that our results are general for a
wide class of similar models of proteins interacting with
DNA.

To investigate the force-dependent interactions be-
tween DNA-binding proteins we use a discretized WLC
model including protein-binding effects [10] (essentially
the model of Refs. [12] and [13]). The DNA is treated
as a chain of N links each of length b, with each link
able to point in any direction with a Boltzmann weight
that depends on the angle between adjacent links. This
form of the model allows it to be treated by “transfer ma-
trix” [14] methods, whereby summation over individual
link degrees of freedom can be reduced to matrix mul-
tiplications. This method has a long history of use in
biopolymer physics, from early studies of the helix-coil
transition [15], to recent studies of semiflexible polymer

elasticity [16, 17].

In our model, proteins are taken to bind “nonspecifi-
cally” (with no sequence-dependent affinity) to the nodes
between adjacent links. The DNA-protein complex en-
ergy is a sum over the links,

βE =
N
∑

i=1

{a

2
|t̂i+1 − t̂i|2(1− ni) +

[

a′

2
(t̂i+1 · t̂i − γ)2 − µ

]

ni

−βbf t̂i · ẑ − ηnini+1

}

, (1)

where t̂i is an unit vector which describes the direction
of each link, the dimensionless parameter a (= A/b) is
the naked DNA bending rigidity, a′ is the rigidity of a
protein-occupied node, and ni is the protein occupation
degree of freedom for the i-th node (ni = 0 for an un-
occupied node, or 1 for a protein-bound node). Protein
binding is controlled by the chemical potential µ which is
a function of bulk protein concentration c (µ = ln[c/c0]
where c0 is a protein-dependent constant determining the
binding affinity), and the bends induced by protein bind-
ing are described by γ = cos θ, where θ is the preferred
angle between adjacent links resulting from protein bind-
ing. The DNA-protein complex is stretched by the ap-
plied force in the ẑ direction. Finally, η is the intrinsic
binding cooperativity, describing the strength of direct
interaction between adjacent bound proteins.

This model describes a variety of DNA-binding pro-
teins [10, 12, 18], depending on the various parameter
values chosen. For most situations of interest, the to-
tal DNA contour length L (= Nb) can be taken to be
much bigger than the link length b, and a periodic bound-
ary condition can be used (t̂N = t̂0). We compute the
equilibrium partition function Z = Tr(TN ) following the
method of Ref. [10], where T is the transfer matrix for a
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link

T =

( (

〈t̂i, 1|T|t̂i+1, 1〉
) (

〈t̂i, 1|T|t̂i+1, 0〉
)

(

〈t̂i, 0|T|t̂i+1, 1〉
) (

〈t̂i, 0|T|t̂i+1, 0〉
)

)

=

(

Aeµ+η
Aeµ

B B

)

. (2)

Here A and B are matrices with elements 〈t̂|A|t̂′〉 =

e−
a′

2
(t̂·t̂′−γ)2+βbft̂·ẑ and 〈t̂|B|t̂′〉 = e−

a
2
|t̂′−t̂|2+βbft̂·ẑ.

The matrices may be expressed in terms of spherical
harmonics, i.e.,

〈lm|A |l′m′〉 ≡
∫

dt̂

∫

dt̂′Y ∗
lm(t̂)

〈

t̂
∣

∣A
∣

∣t̂′
〉

Yl′m′(t̂′) , (3)

where the integrals are on the unit sphere. Due to axial
symmetry around the stretching (z) direction, the matrix
elements are diagonal in m, i.e., Eq. 3 is proportional to
δmm′ . Closed-form expressions for the matrix elements
of A and B can be found in Sec. S1 of Supplemental
Material [19].
Protein occupation at any node along the chain can

be computed in this transfer matrix framework using the
“operators” 〈t̂, n|n̂|t̂′, n′〉 = δt̂t̂′δnn′n, or

n̂ =

(

1 0

0 0

)

, (4)

where 1 and 0 stand for the unit matrix and zero matrix
in the {|l,m〉} space, respectively. The average and two-
point correlations for the occupation variables are

〈ni〉 = Tr(n̂TN )/Tr(TN ) ,

〈nini+j〉 = Tr(n̂Tj
n̂T

N−j)/Tr(TN ) ,

Gn̂(r, f) ≡ 〈nini+j〉 − 〈ni〉〈ni+j〉 , (5)

whereGn̂(r, f) is the protein occupation correlation func-
tion for two DNA-binding proteins separated by contour
length r = jb.
The three components of the tangent vector can also

be expressed as “operators”: 〈t̂, n|t̂i|t̂′, n′〉 = δt̂t̂′δnn′ti,
i = x, y, or z. It will be useful to express t̂

x and t̂
y in

terms of raising and lowering operators t̂
± = t̂

x ± it̂y.
Matrix elements of these operators in the {|l,m〉} basis
are straightforward to compute (Sec. S2 of Supplemental
Material [19]).
These matrices have some important symmetries; t̂±

and t̂
z are diagonal in n (for the moment we suppress

the simple n-dependence of these operators). Second, t̂z

is diagonal in m due to rotational symmetry around the
z direction; in the {|l,m〉} space with an appropriate or-
der of basis vectors, t̂z is block-diagonal (nonzero entries
shown as purple or dark gray entries of Fig. 1 for l, l′ ≤ 3).
On the other hand, in this basis the raising (lowering) op-
erator t̂+ (t̂−) is a block lower (upper) next-to-diagonal
matrix [nonzero entries indicated as the orange or light
gray lower (upper) next-to-diagonal elements in Fig. 1].
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FIG. 1. (color online) Structure of the three tangent compo-
nent operators t̂

z, t̂+, and t̂
− in {|l, m〉} space for the case

l, l′ ≤ 3 (ignoring the n-dependence). For matrix t̂
z, only

matrix elements along the main diagonal blocks are possibly
non-zero (purple or dark gray); all other matrix elements are
zero. For matrix t̂

+ (t̂−), only matrix elements in the lower
(upper) next-to-diagonal blocks are possibly non-zero (orange
or light gray); all other matrix elements are zero.

The raising and lowering operators also have some key
symmetries in the {|l,m〉} basis:

t̂
+
l,m,n;l′,m−1,n = −t̂

+
l′,1−m,n;l,−m,n

‖ ‖
t̂
−
l′,m−1,n;l,m,n = −t̂

−
l,−m,n;l′,1−m,n

. (6)

The average z-component of the tangent vector is

〈tzi 〉 = Tr(t̂zTN )/Tr(TN ) , (7)

which also equals the molecule end-to-end extension as a
fraction of total contour length. The transverse compo-
nents of the tangent vector average to zero by symmetry:
〈txi 〉 = 〈tyi 〉 = 0.
The longitudinal correlations are

Gt̂
z

(r, f) ≡ 〈tzi tzi+j〉 − 〈tzi 〉〈tzi+j〉 , (8)

〈tzi tzi+j〉 = Tr(t̂zTj
t̂
z
T

N−j)/Tr(TN ) ,

and the transverse correlations are

Gt̂
x

(r, f) ≡ 〈txi txi+j〉 = 〈t+i t−i+j〉/2 = Gt̂
y

(r, f) , (9)

〈t+i t−i+j〉 = Tr(t̂+Tj
t̂
−
T

N−j)/Tr(TN ) .

Before studying force-generated protein-protein inter-
actions, we examine the bending correlation lengths for
naked DNA. In the absence of protein (µ = −∞, driv-
ing ni = 0), Eq. 1 becomes a 1-d Heisenberg model. We
use a segment size b = 5 nm (approximately 15 bp) and
DNA bending stiffness a = 10 corresponding to persis-
tence length A = ab = 50 nm. We consider the long-
DNA limit L ≫ A for all computations, and a cutoff on



3

l is chosen to obtain ten-digit numerical precision (typ-
ically lmax = 14). The averages of the z-component of
the tangent vector 〈t̂z〉 and the tangent vector correla-

tion functions Gt̂
z

(r, f) and Gt̂
x

(r, f) are computed from
Eqs. 7, 8 and 9 (Sec. S3 of Supplemental Material [19]).
For large j, we extract correlation lengths from the ex-
pected asymptotic form of the correlation functions:

Gt̂
z

(r, f) = C‖(f)e
−r/ξ‖(f) , (10)

where ξ‖(f) and C‖(f) are the longitudinal correlation
length and amplitude. Similarly, we extracted the trans-
verse correlation length ξ⊥(f) and amplitude C⊥(f).
Fig. 2(a) shows ξ‖(f) (bottom pink crosses) and ξ⊥(f)

(top orange pluses) as a function of force. For small
forces, the two correlation lengths approach the same
limit ξ‖(f) ≈ ξ⊥(f) ≈ 50 nm, the persistence length for
a dsDNA. However, as force is increased, the two correla-
tion lengths vary differently. As one enters the high-force
range (f > kBT/A ≈ 0.1 pN) the correlation lengths bi-
furcate into two curves, both ∼ f−1/2 but with different
coefficients: ξ⊥ = 2ξ‖ =

√

kBTA/f . ξ‖(f) approaches
(numerically) exactly half of ξ⊥(f) for large forces.
Fig. 2(b) shows the longitudinal correlation function

amplitude C‖(f) (bottom pink crosses), the zero-distance

correlation function Gt̂
z

(0, f) (bottom green squares),
the transverse correlation function amplitude C⊥(f) (top
orange pluses ), and the zero-distance correlation func-

tion Gt̂
x

(0, f) (top aqua circles). The longitudinal am-
plitude is (numerically) the square of the transverse cor-
relation function amplitude for large forces.
To analytically understand the relationship between

the transverse and longitudinal correlation functions for
naked DNA, we consider the high-force limit (f ≫
kBT/A) of the continuous WLC model where a Gaus-
sian approximation for tangent vector fluctuations be-
comes appropriate [11]. In this limit, since t̂ fluctuates
only slightly around ẑ, then tx and ty are small quanti-
ties, and tz = 1 − (t2x + t2y)/2 + O(t4x + t4y). Following
Ref. [11] (Sec. S4 of Supplemental Material [19]),

Gt̂
x

(r, f) =
√

kBT/4Af e−r/
√

kBTA/f + · · · ,

Gt̂
z

(r, f) = (kBT/4Af) e
−r/

√
kBTA/4f + · · · . (11)

Therefore, the longitudinal correlation function is es-
sentially the square of the transverse correlation func-
tion in the large force limit, indicating that ξ‖(f) =
√

kBTA/4f = ξ⊥(f)/2 and C‖(f) = kBTA/4Af =
C2

⊥(f). Fig. 2 includes analytic results for ξ‖(f)
(Fig. 2(a), bottom red line), ξ⊥(f) (Fig. 2(a), top blue
line), C‖(f) (Fig. 2(b), bottom red line) and C⊥(f)
(Fig. 2(b), top blue line). In the high-force range, the
analytic results match our numerical calculation.
The asymptotic behaviors of the transverse and longi-

tudinal correlation functions can also be obtained from
the discrete WLC transfer matrices, using Gt̂

z

(r, f) and

Gt̂
x

(r, f) defined in Eq. 8 and Eq. 9, respectively. In the
large-N limit (Sec. S5 of Supplemental Material [19]) ,

Gt̂
z

(r, f) =
∑

k=1

(tz0)0,k (t
z
0)k,0

(

λ0
k

λ0
0

)j

,

Gt̂
x

(r, f) =
1

2

∑

k=1

(

t
+
0,−1

)

0,k

(

t
−
−1,0

)

k,0

(

λ1
k

λ0
0

)j

, (12)

where the λm
k (m = 0,±1,±2, · · · ; k = |m|, |m|+1, |m|+

2, · · · ) are the eigenvalues of the m-th diagonal block
of the “naked DNA” matrix B and λm

|m| > λm
|m|+1 >

λm
|m|+2 > · · · . Sec. S6 of the Supplemental Material [19]

shows how applied force f affects the eigenvalues {λm
k },

i.e., the transfer matrix spectrum of naked DNA.
(tzm)k1,k2

is the matrix element of the m-th diag-

onal block of the matrix t̂
z (ignoring n-dependence)

expressed by taking the eigenvectors of the m-th
diagonal block of the naked matrix B ({|λm

k 〉})
as the basis, (tzm)k1,k2

=
〈

λm
k1
|̂tzm|λm

k2

〉

. Sim-

ilarly,
(

t
+
m,m−1

)

k1,k2

=
〈

λm
k1
|̂t+m,m−1|λm−1

k2

〉

and
(

t
−
m,m−1

)

k1,k2

=
〈

λm−1
k1

|̂t−m−1,m|λm
k2

〉

.

For large distances (large j) the correlation functions
(12) is dominated by the k = 1 contributions, giving

ξ‖(f) =
b

ln(λ0
0/λ

0
1)

, ξ⊥(f) =
b

ln(λ0
0/λ

1
1)

. (13)

We have verified that the calculated results of ξ‖(f) and
ξ⊥(f) by Eq. 13 computed by matrix diagonalization
[bottom green squares and top aqua circles in Fig. 2(a)]
match the result computed directly from the multiplica-
tion of matrices [compare to bottom pink crosses and top
orange pluses in Fig. 2(a)].
We now consider the interaction between DNA-

bending proteins. We computed the protein occupation
correlation function Gn̂(r, f) along a DNA in dilute pro-
tein solution, the decay of which provides the correla-
tion length for the inter-protein interaction, for the case
γ = 0 and a′ = 50, corresponding to a rather stiff protein-
DNA complex with a preferred bend angle of 90◦. We ex-
tract the protein occupancy correlation length, just as in
Eq. 10; the result for µ = −5 and η = 0 is shown in Fig. 3
(bottom grey filled circles; also see Sec. S7 of Supplemen-
tal Material [19]). For comparison, in Fig. 3 we also show
the tangent vector correlation lengths of protein-bound
DNA (bottom pink crosses and top orange pluses) and
those of naked DNA (bottom green squares and top aqua
circles).
Fig. 3 reveals that the protein occupancy correlation

length is equal to the longitudinal tangent vector corre-
lation length ξ‖(f, µ). This can be understood from the
diagonal-in-m form (Fig. 1) of the protein occupancy ma-
trix n̂, which is shared by A, t̂z , and B reflecting their
axial rotational symmetry. For the protein occupancy
correlation function, just as for Gt̂

z

(r, f), blocks of differ-
ent m are decoupled, leading to the correlation function
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FIG. 2. (color online) Tangent vector correlation lengths and amplitudes for naked DNA. (a) The longitudinal correlation
length ξ‖(f) calculated by three different methods: by Eq. 10 (bottom pink crosses), by Eq. 11 (bottom red line), and by Eq. 13
(bottom green squares, overlapping with bottom pink crosses). The transverse correlation length ξ⊥(f) calculated by three
different methods: by Eq. 10 (top orange pluses), by Eq. 11 (top blue line), and by Eq. 13 (top aqua circles, overlapping with

top orange pluses). In high-force range, ξ⊥(f) = 2ξ‖(f) =
√

kBTA/f . (b) The longitudinal correlation function amplitude

C‖(f) calculated by Eq. 10 (bottom pink crosses), agreeing with Gt̂
z

(0, f) (bottom green squares) and the high-force limit
from Eq. 11 (bottom red line). The transverse correlation function amplitude C⊥(f) calculated by Eq. 10 (top orange pluses),

agreeing with Gt̂
x

(0, f) (top aqua circles) and the high-force limit from Eq. 11 (top blue line).
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FIG. 3. (color online) Protein occupation correlation length
along DNA (bottom grey filled circles) in dilute protein so-
lution (µ = −5, η = 0, γ = 0, a′ = 50). For reference, the
tangent vector correlation lengths along DNA in the same so-
lution (bottom pink crosses and top orange pluses) and those
along a naked DNA (bottom green squares and top aqua cir-
cles) are shown. Inset shows ln[Gn̂(r)/e2µ] vs. distance at
f = 0.1 pN (green squares) and a linear fit of it (black line).

decay being determined by the largest two eigenvalues
of the (m = 0)th diagonal blocks of transfer matrix T,
which has the largest eigenvalue of T. Thus, the correla-
tion function of the protein occupation degrees of freedom
have a decay length of ξ‖(f, µ). For large forces, this is
exactly half of the longest correlation length in the prob-
lem, that of ξ⊥(f, µ); this longer transverse correlation
length arises from the off-block-diagonal structure of t̂±

which allows selection of the two largest eigenvalues from
any two adjacent diagonal blocks of T. The protein oc-
cupancy operator n̂ has higher symmetry (Eq. 4), which
makes 〈n2

i 〉 = 〈ni〉 and explains the jump of protein oc-
cupation correlation function at r = 0.

Our main result, namely ξ‖ being the range of protein-
protein interactions mediated by bending fluctuations
along a stretched DNA, follows from the rotational sym-
metry of the protein-DNA interaction operator A. This

result is general for proteins which distort DNA structure
as long as the distortions are isotropically distributed
around the double helix axis (the same result follows for
other values of γ, a′ and µ, Sec. S8 of Supplemental Ma-
terial [19]). For non-sequence-specific binding this will
be the case since two proteins may bind in essentially
any relative axial orientation by shifting their binding
positions over a 10.5 base-pair range (the h ≈ 3.6 nm
helix repeat for dsDNA), a length scale small relative to
the inter-protein separations we are considering. Twist
fluctuations of inter-protein DNA will further random-
ize the relative axial orientation of pairs of DNA-bound
proteins. Of course, for very large forces where ξ‖ be-
comes comparable to h, a more detailed model taking
into account the helix structure would need to be em-
ployed, but in that regime, with ξ‖ comparable in size to
a typical DNA-binding protein, one would expect direct
interactions between adjacent proteins to dominate (Sec.
S7 of Supplemental Material [19]).

One might ask whether the longer ξ⊥ can ever be the
protein-protein interaction range. This would require the
relative angular orientations of the two proteins around
the axial (stretching) direction to be fixed: one might
imagine using a sequence-specific DNA-binding protein
and binding sites “phased” to be at the same orientation
around the double helix (spaced multiples of 10.5 bp) in
an attempt to do this. However, since angular (twist)
fluctuations between the two sites will increase with in-
terprotein distance, one would expect to see an interac-
tion decaying with the longer ξ⊥ only at short distances,
with the shorter ξ‖ dominating at longer distances.

Finally, we note that while the individual protein-
generated distortions considered here are isotropically
distributed around the double helix axis, the relative ori-
entation of two nearby bends can be expected to be an-
gularly correlated. This arises from the fact that two
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oppositely-directed bends of the double helix compen-
sate one another’s distortion [8–10]. Therefore one can
expect force on a DNA to direct the self-organization of
DNA-bending-proteins into clusters (via the interaction
we have analyzed) with correlated bend directions. If
the bends are chiral (the general case since DNA and
proteins are both chiral), nearby proteins will be chirally
organized, i.e. forming locally helical DNA-protein com-
plexes. An important case is that of nucleosomes, which
have well-defined entry/exit angles for the DNA bound
to them, with broken chiral symmetry; moderate applied
tension can be expected to drive the packing and helical
organization of adjacent nucleosomes in chromatin.
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