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A field theory of the Anderson transition in two dimensional disordered systems with spin-orbit
interactions and time-reversal symmetry is developed, in which the proliferation of vortex-like topo-
logical defects is essential for localization. The sign of vortex fugacity determines the Z2 topological
class of the localized phase. There are two distinct fixed points with the same critical exponents,
corresponding to transitions from a metal to an insulator and a topological insulator respectively.
The critical conductivity and correlation length exponent of these transitions are computed in a
N = 1 − ε expansion in the number of replicas, where for small ε the critical points are pertur-
batively connected to the Kosterlitz Thouless critical point. Delocalized states, which arise at the
surface of weak topological insulators and topological crystalline insulators, occur because vortex
proliferation is forbidden due to the presence of symmetries that are violated by disorder, but are
restored by disorder averaging.
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Topology can have a profound impact on Anderson lo-
calization in disordered electronic systems. This was first
understood in the integer quantum Hall effect[1, 2], where
the two dimensional (2D) bulk states at the plateau tran-
sition are extended, even in the presence of strong dis-
order. Subsequently it was recognized that topological
insulators (TI) exhibit boundary states that similarly re-
main extended in the presence of time reversal (TR) in-
variant disorder[3–5]. In the field theory of localization,
this delocalization is associated with the presence of topo-
logical terms in the nonlinear σ model (NLσM)[6–10].

A shortcoming of the conventional scaling theory of
localization[11–14] is that it involves only a single pa-
rameter, the conductivity. It can’t distinguish the trivial
insulator from the TI, and it does not explain the metal-
lic phase that generically occurs between them[15–17]. A
related difficulty is revealed by recent studies of surface
states of 3D weak TIs (WTI)[18–20] and of topological
crystalline insulators (TCI)[21, 22]. General arguments,
as well as numerics, suggest that these surfaces remain
delocalized even with strong disorder, due to symmetries
that are violated by disorder, but remain unbroken on
average. This led to the suggestion that there should
be a second symmetry breaking parameter in the scaling
theory[19]. This poses the question of how average sym-
metries fit into the field theory of localization, and what
the role of the second parameter is.

In this paper we answer those questions by examining
the crucial and largely unexplored role played by topolog-
ical defects in the NLσM in the 2D symplectic class[23].
We show that localization is driven by the proliferation
of pointlike Z2 vortices, and that the sign of the vor-
tex fugacity distinguishes a TI from a trivial insulator.
We find that average symmetries can place the system

on a line where the vortex fugacity vanishes, dictating
delocalization. This analysis also provides new insight
into the 2D symplectic metal-insulator transition. We
find two distinct but equivalent fixed points describing
transitions to insulator and TI states. By treating the
number of replicas, N as a continuous variable, we show
that for N = 1 − ε the Anderson transition fixed points
are perturbatively connected to the Kosterlitz-Thouless
(KT) transition fixed point[24] for ε → 0. This allows
us to compute the critical conductivity and correlation
length exponent perturbatively in an ε expansion.

Before describing the symplectic class, we briefly dis-
cuss a simpler version of delocalization via average sym-
metry in the unitary class. The surface of a 3D strong
TI (STI) is delocalized[9, 25], but TR violating per-
turbations lead to localization. The localized state is
in a sense “half” of a quantum Hall state, and has
σxy = ±e2/2h. Importantly, the time reverse of this
state, with σxy = ∓e2/2h, is topologically distinct. If
impurities have random local moments so TR symmetry
is unbroken on average then the system is precisely at
the transition between the two localized states. This can
be modeled by an ensemble in which each member vio-
lates TR, but the whole ensemble is TR invariant. This
is described by a NLσM in the unitary class, which in 2D
allows a topological term[6] characterized by an angle θ
related to the Hall conductivity. Since TR, applied to
the ensemble, takes θ to −θ, average TR symmetry con-
strains θ to be 0 or π. The surface of a STI corresponds
to θ = π, so the surface is precisely at the critical point of
the quantum Hall plateau transition[26]. If the average
symmetry is broken by an applied magnetic field, then
the system flows to a localized phase with σxy = ±e2/2h.

WTI and TCI surfaces also have discrete average sym-
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metries. For a layered WTI it is translation by one layer.
For the TCI studied in Ref.[22], it is a mirror symmetry.
Breaking the symmetry gaps the surface, leading to local-
ization. However, applying the symmetry to the gapped
state leads to a topologically distinct localized state, so
that there exists a 1D helical edge mode at the interface
between the two localized states. If the symmetry is re-
spected on average, then the system is at the boundary
between the two localized states. It is clear that even for
strong disorder, the system can not be localized at this
point because a change in topological class can only occur
when extended states are present at the Fermi energy.

To develop a field theory for this delocalization, we
use the fermionic replica theory introduced by Efetov
et al.[13]. Our analysis closely parallels that of Ryu, et
al.[9]. We consider a system with average Hamiltonian
H0 and Gaussian correlated TR invariant disorder. Us-
ing the replica trick, the disorder averaged product of
retarded and advanced Green’s functions can be gener-
ated from the partition function Z =

∫
D[ψ̄, ψ]e−S , with

S =

∫
d2r[ψ̄a((H0−E)δab+ iηΛab)ψb−

g

2
(ψ̄aψb)(ψ̄bψa)]

(1)
Here a = 1, ..., 2N is an index for N retarded and N
advanced replicas, and Λ = 1N ⊕ (−1)N , where 1N is
a N × N identity matrix. g is a coupling constant that
characterizes the disorder strength, and ψa is a Grassman
field that includes (suppressed) spin, position and possi-
bly orbital indices. ψ̄a ≡ ψTa iσy, where σ acts on the spin
indices. TR requires σyH0σ

y = H∗0, so iσy(H0 − E) is a
skew symmetric matrix. For η = 0, (1) is invariant un-
der O(2N) rotations among the replicas, which is broken
down to O(N)×O(N) by η.

A theory of the Nambu Goldstone modes associated
with this symmetry breaking is formulated by Hubbard
Stratonovich decoupling the four fermion interaction, and
performing a saddle point expansion about the broken
symmetry state. After freezing the massive modes, the
saddle point is characterized by a 2N × 2N matrix field
Q = OTΛO, with O ∈ O(2N). Distinct values of Q
belong to the coset G/H = O(2N)/O(N) × O(N) and
satisfy Q = QT , Q2 = 1. A theory for the long wave-
length fluctuations in Qab is obtained by integrating ψa
in the background of a spatially varying Qab. This gives
Zeff =

∫
D[Q]e−Seff [Q] with

e−Seff [Q] =

∫
D[ψ̄, ψ]e−

∫
d2r[ψ̄a[(H0−E)δab+i∆Qab]ψb]

(2)
Here ∆ is a parameter characterizing the bare scattering
time that is determined self consistently at the saddle
point. Expanding in gradients gives the NLσM,

S0
eff [Q] =

1

32πt

∫
d2rTr[(∇Q)2], (3)

where the coupling constant t characterizes the disorder

strength and is related at lowest order to the resistivity,
σ = (2πt)−1e2/h. The renormalization of t at long wave-
lengths is described by the perturbative renormalization
group (RG) equation[13, 14, 27–29]

dt/d` = β(t), β(t) = 2(N − 1)t2 + ... (4)

In the replica limit, N → 0, the weak coupling fixed point
t = 0 is stable, indicating the stability of the symplectic
metal phase, characterized by weak antilocalization.

Eq. 3 is not the whole story because topologically
non trivial configurations of Q can have important non-
perturbative effects. There are two types of topological
configurations associated with the nontrivial homotopy
groups π1(G/H) = π2(G/H) = Z2[10]. π2(G/H) allows
a topological term that prevents localization on the sur-
face of 3D TI[8, 9]. That term is absent in purely 2D
systems as well as WTI or TCI surfaces. For our prob-
lem, the crucial topological objects are point-like defects
similar to vortices that are allowed by the non trivial
π1(G/H). These defects are necessary for localization,
and their contribution to Zeff encodes the distinction be-
tween a trivial insulator and TI.

The role of vortices can be understood by considering
an inhomogeneous 2D system in which a TI in region
S with boundary C is surrounded by a trivial insulator
(Fig. 1a). Imagine integrating out ψa in (2) in the pres-
ence of a vortex configuration Qab(r). Since the interior
of S has a finite gap, the dominant contribution comes
from the 1D helical edge states at the boundary C. On
C, Qab(r ∈ C) is a non-singular and non-contractible
configuration corresponding to the nontrivial element of
π1(G/H). Repeating the analysis of Ryu et al.[9] for
1D helical states, we find a topological term in the 1D
NLσM[10],

e−Seff [Q] ∝ (−1)n(C) (5)

where n(C) = 0, 1 is the Z2 homotopy class of Q on C.
Importantly, since Q is defined in all space (except at the
cores of vortices), n(C) is equal to the number of vortices
inside the TI mod 2. This leads to a bulk characterization
of the TI based on the 2D NLσM: in the TI the fugacity
v of Z2 vortices is negative. In the trivial insulator the
topological term is absent and v > 0, which is obvious for
vanishing spin-orbit coupling since e−Seff [Q] is a perfect
square due to spin degeneracy.

At the transition between the trivial and TI, v must
pass through zero. This suggests v = 0 at the WTI sur-
face. To demonstrate this explicitly, we model a WTI
as a layered 2D TI with helical edge modes H = vxσxkx
stacked in the y direction with separation a. Coupling be-
tween layers gaps the surface, except at two Dirac points
at (kx, ky) = (0, 0) and (0, π/a). Indexing the Dirac
points by τz = ±1, the surface states are described by

H0 = vxσxkx + vyσyτzky +mσyτy (6)
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FIG. 1: (a) A 2D TI (m < 0) in region S with boundary C
is surrounded by trivial insulator (m > 0). The sign of Zeff

depends on the number of vortices in S. (b) For m = 0 the
eigenvalues ofHeff in (10) exhibit a linear zero crossing, which
leads to a vanishing vortex fugacity.

The symmetry of the WTI under translation by one layer
is described by exp(ipya) = τz. Dimerization of the layers
breaks this translation symmetry, and generates a mass
term mσyτy[19]. This is the only mass that respects TR.
The topologically distinct dimerization patterns are dis-
tinguished by sgn(m). The sign reversal of the Dirac
mass m also describes the low-energy theory of the 2D
transition between a trivial and topological insulator[30].

Eq, 3 should include a sum over vortex configurations
in Q. The vortex fugacity is determined by comparing
(2) in the presence and absence of vortices. Consider the
simplest vortex configuration involving a single retarded
and advanced pair of replicas. This can be expressed in
terms of a one parameter family of Q’s of the form

Q(θ) = 1N−1 ⊕
(

cos θ sin θ
sin θ − cos θ

)
⊕ 1N−1. (7)

A Z2 vortex is then a configuration where θ winds by an
odd multiple of 2π.

The Grassman integral in (2) defines a Pfaffian, so that
the vortex fugacity may be written

v =
Pf[iσyD(Q)]

Pf[iσyD(Q0)]
, (8)

where Q is a vortex configuration, and Q0 = Λ. In the
space of the two nontrivial replicas we have

D(Q) = (H0 − E) + i∆(µz cos θ + µx sin θ). (9)

Here µz is a Pauli matrix in the space of the two non-
trivial replicas. To evaluate the Pfaffian, we use a
trick similar to that used by Ryu et al.[9], and compute
(Pf[iσyD])2 = det[iσyD] = det[µyD]. This is useful be-
cause µyD ≡ Heff is a Hermitian operator given by

Heff = µy(H0 − E) + ∆(µx cos θ − µz sin θ), (10)

so the determinant is the product of its real eigenval-
ues. The TR symmetry of the original H0 becomes a
particle-hole symmetry, {Heff ,Ξ} = 0, with Ξ = µyσyK.
Moreover, when m = 0, Heff decouples into two indepen-
dent Hamiltonians for τz = ±1. Each is identical to a
topological superconductor in class D, with θ playing the
role of the superconducting phase. There are two zero

modes indexed by τz = ±1 bound to the core of a Z2

vortex. For m 6= 0, the zero modes couple and split (Fig.
1b). Thus det[µyD] has a second order zero at m = 0,
so Pf[iσyD] has a first order zero, which involves a sign
change as a function of m. This shows that v = 0 for
m = 0, so isolated Z2 vortices are forbidden at the WTI
surface. With multiple vortices the zero modes will split
even for m = 0, leading to a nonzero Pfaffian. However,
since the splitting vanishes exponentially in the separa-
tion, the vortices will be confined by a linear potential.

It is thus clear that the vortex fugacity v is a cru-
cial variable in the NLσM. The TI and trivial insula-
tor involve vortex proliferation and are distinguished by
sgn(v). For v = 0, qualitatively different behavior is ex-
pected reflecting the delocalization of the WTI or TCI
surfaces. For v = 0 the target space of the NLσM effec-
tively lifts to its double cover, G̃/H̃ = SO(2N)/SO(N)×
SO(N), for which π1(G̃/H̃) = 0. Since G/H and G̃/H̃
have identical local structure, their perturbative β func-
tions will be identical. It is useful to first consider this
behavior as a function of the replica number, N .

For N > 1, β(t) > 0, and the weak coupling fixed point
is unstable, leading to a disordered phase even for v = 0.
This phase is “less disordered” than the v 6= 0 disordered
phase, though. The confinement of Z2 vortices leads to
a topological order similar to a Z2 spin liquid[31]. This
can be seen by placing the system in a torus: there are
four topologically disconnected sectors corresponding to
the homotopy classes of Q ∈ G/H along the two large
loops. When v is turned on in this disordered phase, the
Z2 vortices immediately condense. The v = 0 line thus
describes a first order transition between the v > 0 and
v < 0 phases.

The behavior for N → 0 is expected to be qualitatively
different. In this case the weak coupling fixed point is sta-
ble and describes an ordered phase, which is present even
for d ≤ 2[32]. More importantly, the arguments for the
absence of localization under strong disorder presented
above prove that for v = 0 the NLSM at strong coupling
cannot be in a disordered phase. It is useful to consider
the critical value N = 1 that separates these behaviors.
The theory for N = 1 is simply the XY model, and Q is
fully parameterized by θ in (7). Eq. 3 becomes

SN=1 =
1

16πt

∫
d2r(∇θ)2. (11)

Since the target space, S1, is flat, β(t) = 0 to all orders.
Vortices modify the behavior. For small t, 2π vortices in
θ are bound, and the system flows to a fixed line param-
eterized by t. For t > t∗ = 1/16 vortices unbind at a KT
transition[24] to a disordered phase.

We now consider the behavior for N < 1, treating N
as a continuous variable. Since Z2 vortices are present
for all N , it is reasonable to examine their effects as a
function on N . We find that the theory can be controlled
for N = 1 − ε, with ε � 1. To lowest order in ε and v,
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FIG. 2: (a,c) RG flow diagrams based on (12). The stable
fixed point at (t, v) = (0, 0) is the symplectic metal (SM).
The unstable fixed points at (t∗,±v∗) approach the KT tran-
sition for ε = 1 − N � 1 and for N → 0 are identified with
the Anderson transition. (c) includes a third fixed point at
(tm, 0), along with a fixed point at (ts, 0) describing a direct
transition between TI and I. (b) and (d) are phase diagrams
corresponding to (a) and (c).

the KT flow equations are modified by the nonzero (but
small) β(t) ≡ (N − 1)β̃(t),

dt/d` = −εβ̃(t) + v2

dv/d` = (2− (8t)−1)v. (12)

To this order, we are free to set the coefficient of v2 to
one by rescaling v. The RG flows are shown in Fig. 2.
There are two fixed points at

t∗ = 1/16, v∗ = ±[εβ̃(t∗)]1/2 (13)

For small ε, these fixed points are within perturbative
range of the KT fixed point. They describe a transi-
tion between the ordered and disordered phases of the
O(2N)/O(N) × O(N) NLσM for N < 1. For N → 0
we identify these fixed points with the Anderson tran-
sition between the symplectic metal and the localized
trivial/topological insulator. Our theory implies that
these two transitions have identical bulk critical behav-
iors, since the total number of Z2 vortices in a closed
system is always even, so their total contribution to the
partition function is always positive.

By expanding (12) about the fixed point, we can iden-
tify the critical conductivity and the correlation length
exponent associated with the symplectic Anderson tran-
sition. To lowest order in ε we find σ∗ = (2πt∗)−1e2/h =
(8/π)e2/h, and ν = 2t∗/(εβ̃(t∗))1/2. While β̃(t∗) is not
known exactly, β(t) has been computed perturbatively
up to order t5[28]. The small value of t∗ is well within
the range of this perturbation theory. The second or-
der term gives only 6% correction and the higher terms

are even smaller. Using the first term from (4) we find
ν = (2/ε)1/2. Extrapolating to ε = 1 gives

σ∗ ∼ 2.5e2/h, ν ∼ 1.4. (14)

These values are rather different from numerical esti-
mates in previous model studies, which give σ∗ ∼ 1.4e2/h
and ν ∼ 2.7[16, 33–35], though early work on the metal
to TI transition found ν = 1.6[15]. We suggest two possi-
ble origins of the discrepancy, depending on the behavior
of the N = 0 NLσM at strong coupling, which cannot be
accessed in the present analysis. One possibility is that
for N → 0, β(t) < 0 for all t along the line v = 0. The
corresponding RG flow and phase diagrams are shown
in Fig.2a-b. In this case, the symplectic metal-insulator
transition is governed by the fixed point (t∗, v∗). The dis-
crepancy in exponents is then most likely due to the slow
convergence of the ε expansion similar to the d = 2 + ε
expansion for the 3D Anderson transition.

A second possibility is that for N → 0, β(t) changes
sign at a critical point tm on the line v = 0, as hypoth-
esized in Ref. 8 in a different context. In fact, tm is
present for N = 1 − ε. For N = 1, double vortices are
allowed, and will in general have non zero fugacity. The
theory with both single and double vortices can be ana-
lyzed using a dual sine-gordon theory,

S =

∫
d2r

t

π
(∇ϕ)2 + v cosϕ+ v2 cos 2ϕ, (15)

where v2 is the fugacity for double vortices. When v = 0,
v2 becomes relevant at tm = 1/4. When v2 flows to
strong coupling, v = 0 describes a first order transition
similar to the case when N > 1. It is unlikely that this
first order transition persists to N = 0, which is a the-
ory of disordered non-interacting electrons. Instead, the
most likely scenario is a continuous direct transition be-
tween trivial insulator and TI controlled by a strong cou-
pling fixed point ts, as indicated in Fig. 2c-d. In this sce-
nario, while the ultimate critical behavior is controled by
the identical fixed points (t∗,±v∗), finite size crossover
effects associated with tm, ts could obscure the behavior.
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