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We present a determinant quantum Monte Carlo study of the competition between instantaneous
on-site Coulomb repulsion and retarded phonon-mediated attraction between electrons, as described
by the two dimensional Hubbard-Holstein model. At half filling, we find a strong competition
between antiferromagnetism (AFM) and charge density wave (CDW) order. We demonstrate that
a simple picture of AFM-CDW competition that incorporates the phonon mediated attraction into
an effective-U Hubbard model requires significant refinement. Specifically, retardation effects slow
the onset of charge order, so that CDW order remains absent even when the effective U is negative.
This delay opens a window where neither AFM nor CDW order is well established, and where there
are signatures of a possible metallic phase.

PACS numbers: 71.10.Fd, 71.30.+h, 71.38.-k, 71.45.Lr, 74.72.-h

The electron-phonon (el-ph) interaction is responsible
for many phenomena in condensed matter physics, in-
cluding charge density waves (CDWs) and conventional
superconductivity. While the el-ph interaction is well un-
derstood in metals, the role of phonons in strongly corre-
lated systems is less clear, in part because the interplay of
strong electron-electron (el-el) and el-ph interactions can
lead to competing ordered phases. Despite its difficulty,
this is an important problem to solve because multiple ex-
perimental probes have detected signatures of significant
lattice effects in strongly correlated materials. For ex-
ample, in the cuprate high-temperature superconductors,
angle-resolved photoemission spectroscopy (ARPES) has
observed “kinks” in the band dispersion, which have been
attributed to the el-ph interaction,1 as well as small po-
laron formation in undoped Ca2−xNaxCuOCl2.2,3 Addi-
tional evidence for a significant el-ph interaction include
strong quasiparticle renormalizations detected by STM,4

and studies which have qualitatively reproduced optical
conductivity peaks by including phonons.5,6 Besides the
cuprates, other materials with both strong el-el and el-ph
interactions include the manganites7 and fullerenes.8

On general grounds, two effects are expected when el-
ph interactions are included in a system with strong el-el
repulsion. The first is that the two interactions renormal-
ize each other. The phonons mediate a retarded attrac-
tive el-el interaction, thus reducing the effective Coloumb
repulsion, while the el-el repulsion suppresses charge fluc-
tuations, and hence the el-ph interaction, which couples
to them. The second effect is a reduction in the quasipar-
ticle weight due to additional scattering processes, which
at large el-ph couplings can lead to a polaron crossover.

A natural model for studying the interplay of the el-
el and el-ph interactions is the Hubbard-Holstein (HH)

model, which has been studied using various numerical
approaches producing sometimes contradicting results.
Within dynamical mean field theory (DMFT), the sup-
pression of the el-ph interaction depends on the under-
lying phase, and antiferromagnetic (AFM)-DMFT has
found a moderate increase in the critical el-ph coupling
for small polaron formation.9,10 In contrast, diagram-
matic quantum Monte Carlo work on the t-J-Holstein
model found a reduction in the critical el-ph coupling
needed for small polaron crossover.11 Dynamical clus-
ter approximation (DCA) studies investigated the effect
of phonons on the superconducting Tc, and found that
phonons suppress Tc at small doping levels,12 however,
including longer range hopping terms in the presence of
phonons enhanced Tc.
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In addition to renormalization effects arising from the
interplay of the el-el and el-ph interactions, competition
between ordered phases can occur. On a two dimen-
sional square lattice, at half filling the Hubbard and Hol-
stein models have instabilities towards (π/a, π/a) AFM
and CDW orders, respectively; these phases compete in
the HH model. Due to the many-body nature of the
problem, compounded by the many degrees of freedom
in the HH model, in general there is no exact solution.
In one dimension, the HH phase diagram has been es-
tablished via several numerical approaches, with an in-
termediate metallic state between the AFM and CDW
phases.14–18 The size of the metallic region grows with
increasing phonon frequency.15–17 A similar competition
between AFM and CDW orders and phase diagram have
been mapped out in infinite dimensions with DMFT.19–23

The AFM-CDW competition in two dimensions also has
been studied with perturbative24,25 as well as strong cou-
pling26 techniques.
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In this work we present a determinant quantum Monte
Carlo (DQMC) study of the two dimensional single-band
HH model at half filling. DQMC is a numerically ex-
act method that treats el-el and el-ph interactions on an
equal footing and non-perturbatively. A nonzero el-ph
coupling introduces the fermion sign problem at half fill-
ing.27 Nevertheless, simulations for all parameter ranges
presented in this work can be done down to T = W/40,
where W is the non-interacting bandwidth. Significantly
lower temperatures can be reached in some regimes. For
details of the DQMC method, please refer to Refs. 28–30.

The Hamiltonian for the single-band HH model is H =
Hkin +Hlat +Hint, where

Hkin = −t
∑
<ij>σ

c†iσcjσ − µ
∑
iσ

n̂iσ (1)

Hlat =
∑
i

(MΩ2

2
X̂2
i +

1

2M
P̂ 2
i

)
Hint = U

∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
− g

∑
iσ

n̂iσX̂i.

Here <...> denotes a sum over nearest neighbors, c†iσ
creates an electron with spin σ at site i, n̂iσ = c†iσciσ,
t is the nearest neighbor hopping, Ω is the phonon fre-
quency, U is the el-el interaction strength, g is the el-
ph interaction strength, and µ is the chemical potential,
which is adjusted to maintain half filling. The dimen-
sionless electron-phonon coupling constant is defined as
λ = g2/MΩ2W . Throughout we take t = 1, M = 1, and
a = 1 as our units of energy, mass, and length, respec-
tively.

We first study the spin and charge susceptibilities χs
and χc, which are given by

χs,c(q) =
1

N

β∫
0

dτ < Tτ Ôs,c(q, τ)Ô†s,c(q, 0) > (2)

where Ôs(q) =
∑
i e
iq·Ri(n̂i↑ − n̂i↓), and Ôc(q) =∑

i e
iq·Ri(n̂i↑ + n̂i↓).

The susceptibilities at wavevector q = (π, π) are shown
in Fig. 1 for several values of U . With increasing λ, χs
decreases, signaling that the el-ph interaction reduces the
strength of the effective el-el repulsion. This decrease in
χs occurs immediately with the inclusion of nonzero λ
for low to intermediate U , while for large U , suppres-
sion of χs does not occur until the el-ph coupling is fairly
strong (λ=0.5 for U=8t, and λ > 1 for U=10t). As χs
shrinks, χc increases, indicating a clear competition be-
tween the spin and charge orders. For all values of U
considered here, χc is negligible up to a U -dependent
critical λ, at which point it grows rapidly. However, for
strong el-el interactions (U = 8t, 10t), χc is still rela-
tively small even at λ = 1, due to the strong tendency
toward AFM still present. Interestingly, rather than con-
tinuously growing with λ, the CDW susceptibility peaks
and then decreases, for U = 2t-6t. We attribute this be-
havior to the finite CDW transition temperature in the
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FIG. 1. (a) χs(π, π) and (b) χc(π, π) for several U on an
N = 8 × 8 lattice. Inset of (b) shows χs (dashed lines) and
χc (solid lines) at U = 4t for several lattice sizes. The error
bars in the inset are suppressed for clarity. The remaining
simulation parameters are: β = 4/t, ∆τ = 0.1/t, Ω = t.
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FIG. 2. Structure factors (a) Ss(π, π) and (b) Sc(π, π) for
a Ueff Hubbard model (black) and the U = 8t HH model
with several phonon frequencies. The remaining simulation
parameters are: N = 8 × 8, β = 4/t, ∆τ = 0.1/t.

HH model, which will be discussed in more detail below.
The inset in Fig. 1(b) shows χs and χc for U = 4t for
several lattice sizes, demonstrating that the lattice size
has little effect on our conclusions.

Since one of the effects of el-ph coupling is to reduce
the effective strength of U , we investigate how well a
Ueff Hubbard model can describe the physics of the HH
model. Integrating out the phonon field in the HH model
yields a dynamic el-el interaction:

Ueff(ω) = U − g2

M(Ω2 − ω2)
. (3)

In the anti-adiabatic limit (Ω→∞) this interaction be-
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comes instantaneous, and reduces to the form Ueff =
U − λW . A frequency-independent Ueff Hubbard model
is often used to describe the HH model, even at finite
Ω. For example, DMFT studies have found that such
an approach captures the low-energy physics of the HH
model.9,22

Fig. 2 compares the spin and charge structure factors
Ss,c(q) =<Ôs,c(q)Ô†s,c(q)> at q = (π, π) of a frequency-
independent Ueff Hubbard model and the U = 8t HH
model at several phonon frequencies. Up to λ ≈ 0.25,
Ss(π, π) in the Ueff and HH models agrees for all Ω con-
sidered. Beyond this point, Ss(π, π) is suppressed more
slowly in the HH model than in the Ueff model, due to
the retarded nature of the el-ph interaction captured in
HH. As Ω increases, the HH result comes closer to the
Ueff result, until by Ω = 4t, the two models agree within
the error bars. We also considered other values of U (not
shown), and found that for a given Ω the difference be-
tween the HH and Ueff results grows as U increases. In
contrast to Ss(π, π), Sc(π, π) calculated in the Ueff and
HH models does not agree for any λ. Rather, Sc(π, π) im-
mediately rises in the Ueff model, while in the HH model
it remains small until λ ≈ 0.75, and then rises sharply.
As the phonon frequency increases, the HH and Ueff re-
sults get closer, although they are still inconsistent at
Ω = 4t. This result is generic; while the Ueff Hubbard
model has a CDW phase for any Ueff that is negative, χc
remains suppressed well beyond the λ at which Ueff =0,
as is clear in Fig. 1(b) where Ueff =0 at λ= 0.25, 0.5, and
0.75 for U=2t, 4t, and 6t, respectively.

An additional difference between the HH and Ueff mod-
els is the CDW transition temperature. In the HH model,
while TAFM = 0 in two dimensions due to the Mermin-
Wagner theorem, TCDW is finite because the order pa-
rameter has two states. DQMC finite size scaling stud-
ies31,32 of the Holstein model found that tβCDW = 8−11
for Ω = t and λ = 0.25. While we did not perform a scal-
ing analysis for the HH model, we expect TCDW to be
in the same temperature regime, because while the in-
clusion of U in the HH model localizes carriers (which
would lower TCDW ), it also pushes the CDW transition
to a larger λ (which would increase TCDW ). In contrast,
TCDW = 0 in the attractive-U Hubbard model. The
sharply peaked nature of χc in Fig. 1(b), differing from
the slow evolution of χs, may be due to the proximity of
the temperature tβ = 4 to TCDW .

We now turn to the spectral properties of the HH
model. To avoid analytic continuation, we focus on the
spectral weight near the Fermi level, which is obtained
from the imaginary time propagator via the relation33

βC(k, τ = β/2) =
β

2

∫
dωA(k, ω)g(ω, β) (4)

where C and A are the propagator and spectral function,
respectively, and g(ω, β) = ω/ sinh(βω/2) for bosons
and = 1/ cosh(βω/2) for fermions. At low tempera-
ture, g(ω, β) is sharply peaked about ω = 0, so that
A(k, ω = 0) dominates the integral. We consider the
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FIG. 3. (a) Local phonon propagator βD(r = 0, τ = β/2) for
several values of U at β = 4/t. (b) χc(π, π) for U = 2t and
several values of β. The remaining simulation parameters are:
N = 8 × 8, ∆τ = 0.1/t, Ω = t.

local propagator C(r = 0) =
∑

k C(k), which is re-
lated to the low energy projected density of states via
N(0) ≈ βC(r = 0, τ = β/2)/π.

The phonon propagator, defined as Dij(τ)=

<Tτ X̂i(τ)X̂j(0)>−<X>2, contains information on
phonon softening at the CDW transition. In the Hol-
stein model, the phonon spectral function is peaked at
the bare phonon frequency ±Ω in a system without el-ph
coupling; el-ph interactions renormalize the phonon
frequency and lead to spectral weight at other frequen-
cies. In particular, the appearance of spectral weight at
ω = 0 indicates the development of a static CDW lattice
distortion, which is revealed by βD(r = 0, τ = β/2)
(abbreviated as βDβ/2), as shown in Fig. 3. For low
el-ph coupling, βDβ/2 is negligible, since the system
is far from the CDW state. It then increases at the
same U -dependent λ at which χc rapidly increases in
Fig. 1(b). This phonon softening indicates that the
CDW formation may have a Peierls-like origin, in which
case the Fermi surface could be restored during the
transition from an AFM to a CDW insulator. Fig. 3(b)
shows χc at U = 2t for several lower temperatures.
With decreasing temperature, the rise in χc sharpens
dramatically and also shifts to lower λ, appearing to
asymptote towards a divergence in the susceptibility at
low temperature around λ = 0.3. We also note that the
peak and subsequent decay in the CDW susceptibility
discussed earlier appears robustly as a function of
temperature.

The electronic spectral weight near ω = 0 also of-
fers insight into the AFM-CDW transition. In this case,
βG(r = 0, τ = β/2) (abbreviated as βGβ/2) distinguishes
between insulating and metallic systems, being 0 in the
low temperature limit when a gap is present, and finite
if a band disperses through the Fermi level. Fig. 4(a)
shows βGβ/2 for several values of U . For small λ, βGβ/2
decreases with increasing U , indicating the opening of
the Mott gap. As a function of increasing λ, βGβ/2 falls
for U=2t as the CDW gap develops. For U = 4t and 6t,
βGβ/2 initially grows as the el-ph interaction reduces the
effective el-el repulsion and the Mott gap closes, and then
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FIG. 4. Local electron Green’s function βG(r = 0, τ = β/2) for (a) several values of U at β = 4/t, and (b) at U = 5t for several
β. (c) Average double occupancy <n↑n↓> at β = 4/t. The dashed line indicates where <n↑n↓>=0.25. (d) Φc −Φs at β = 4/t.
The remaining simulation parameters are: N = 8 × 8, ∆τ = 0.1/t, Ω = t.

decreases quickly as the CDW gap opens. For all these
U , βGβ/2 begins to fall at the same λ at which χc in-
creases in Fig. 1(b) and the phonon softens in Fig. 3(a).
For U = 8t and 10t βGβ/2 grows slowly with λ as the
Mott gap narrows.

What can the peak in βGβ/2 at intermediate λ in
Fig. 4(a) tell us about the AFM-CDW transition? In
Fig. 4(b), we plot βGβ/2 at U = 5t for several temper-
atures. As the temperature is lowered, βGβ/2 decreases
at small and large λ as the Mott and CDW gaps open,
respectively. However, at intermediate el-ph coupling,
βGβ/2 actually grows with decreasing temperature, be-
havior that could arise from an intervening metallic phase
between the Mott and CDW insulating states. This in-
crease in spectral weight at intermediate λ was observed
robustly for several lattice sizes and values of U . In addi-
tion, the possible implication of a Fermi surface in the in-
termediate state, from the phonon softening in Fig. 3(a),
further supports the idea of an intermediate metallic
phase.

To further explore signatures of this possible metallic
state, we plot the average double occupancy <n↑n↓> in
Fig. 4(c). The double occupancy distinguishes between
(π, π) AFM and CDW insulators, where it is 0 and 0.5,
respectively. In a metallic state (or an AFM-CDW coex-
istence state), <n↑n↓>= 0.25. We find that <n↑n↓> in-
creases smoothly with energy through 0.25, which is con-
sistent with an intermediate metallic state, rather than

a direct AFM-CDW transition at a critical λ, where a
sharp jump would be expected. While the transition from
low to high double occupancy may sharpen as temper-
ature is lowered, we note that in the range tβ = 2 − 5,
we found much less temperature dependence in <n↑n↓>
than in other quantities considered in this paper.

A finite temperature U −λ phase diagram for β = 4/t,
depicting the difference of the charge and spin order pa-
rameters, Φc − Φs, is shown in Fig. 4(d). Here, the or-
der parameters are defined as Φs =

∑
i(n̂i↑ − n̂i↓)

2/N
and Φc =

∑
iσ(n̂iσ − 1)2/N . Lines denoting Ueff =0,

<n↑n↓>= 0.25, and the peak in βGβ/2 are also included.
The dominance of AFM and CDW orders at large U and
λ, respectively, is apparent. However, a sizable transition
region, where Φc−Φs ≈ 0 is clearly visible. The lines Ueff

=0 and <n↑n↓>= 0.25 lie in the center of the transition
region, while the peak in βGβ/2 is toward the side dom-
inated by spin order. The coincidence of multiple quan-
tities consistent with a metallic state in the intermediate
region of the phase diagram corroborate the case for the
existence of such a phase.

To summarize, in this work we demonstrated a strong
competition between AFM and CDW phases in the two
dimensional single band HH model, and found evidence
for a possible intermediate metallic regime existing be-
tween the ordered phases. We investigated how well an
effective-U Hubbard model can describe the physics of
the HH model, and found that while in some regimes
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the two models give comparable results, in general the
retarded nature of the el-ph interaction leads to signif-
icant differences. The U -λ phase diagram determined
in our study is qualitatively similar to that found by
low temperature numerical approaches, with the Ueff =0
line dividing the regions of dominant spin and charge
order parameters. We found evidence for an intermedi-
ate metallic phase in two dimensions, similar to previous
1-d results..14–17 The size of the intermediate metallic re-
gion shrinks as the interaction strengths grow, which is
consistent with Refs. 15–17 where the metallic phase is
found to terminate at strong couplings. These findings
contrast with the infinite dimensional DMFT results of
Refs. 22 and 23, where a direct order to order transition

was found. Potential explorations for future work include
studying the effect of phonon frequency on the interme-
diate metallic state, and understanding more precisely
where the metal-insulator transitions lie.
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