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Abstract

Nonradiative carrier recombination is of both applied and fundamental interest. Here a novel

algorithm is introduced to calculate such deep level nonradiative recombination rate using ab initio

density functional theory. This algorithm can calculate the electron-phonon coupling constants all

at once. An approximation is presented to calculate the phonon modes for one impurity in a large

supercell. Neutral ZnGaVN center is considered as the carrier capturing deep impurity level in bulk

GaN. Its capture coefficient is calculated as 5.57 × 10−10cm3/s at 300 K. We found that there is

no apparent onset of such nonradiative process as a function of temperature.

PACS number(s): 63.20.dk,72.10.Di,61.72.S-

1



The nonradiative carrier recombination as often described by the Shockley-Read-Hall

(SRH) [1–3] model is a very important process in semiconductor physics. Unfortunately,

direct measurement of such processes is scarce [4–9], and reliable data are not always avail-

able. Unfortunately, since the early analytical work in 50’s and 60’s [10–13], there is a lack

of progress in terms of ab initio calculation in this field. On the other hand the nonradiative

decay processes have been calculated in quantum chemistry for molecules [14–16], and the

fundamental formalism describing the multi-phonon process is well established long ago [13]

and has been proved to be quantitatively accurate for molecular systems [14–16]. One chal-

lenge to apply such formalism to bulk semiconductor impurity is the large computational

cost, which prevends the application of the ab initio calculations to these problems. Here,

we introduce a new algorithm, which calculates the electron-phonon coupling constants all

at once, and makes it possible to use ab initio density functional theory (DFT) to calculate

the deep level nonradiative decay rate in a semiconductor. This new method can also be

used to study other multi-phonon emission related charge transports, e.g. carrier cooling,

interface transport, surface state trapping, and quantum dot charge transfer [17, 18].

GaN has attracted great interest over the past two decades as a material for blue and

ultraviolet light emitting devices [19, 20]. The synthesized GaN often contains uninten-

tionally doped Zn impurity accompanying an characteristic blue shift in photoluminescence

(PL) [5–8], and also a sharp drop in PL intensity, due to nonradiative decay. Although the

exact nature of the nonradiative decay center is still under debat, it is suggested [5] that

it could be ZnGaVN , a Zn impurity site together with a N vacancy as shown in the inset

of Fig. 1. The experimentally fitted nonradiative capture rate ranges from 3 × 10−6cm3/s

to 3 × 10−10cm3/s [5–9], highlight the importance of using ab initio method to clarify the

situation.

A 299(5×5×3) atom supercell is used to calculate the formation energy of ZnGaVN center

following the procedure of Ref. [21–24] using HSE functional [25, 26] and generalized gradient

approximation (GGA) atomic relaxation. The cutoff for the plane-wave basis is 400 eV. The

mixing parameter of HSE was set to 0.25 [25, 26]. The GGA calculated equilibrium lattice

parameters of GaN, a = 3.20Å, c = 5.22Å, and u = 0.377, agree well with experimental

result (a = 3.20Å, c = 5.22Å, and u = 0.377) [27]. This part of the calculation uses the

commercial code VASP (the Vienna ab initio simulation package) [28]. Following Ref [29],
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the formation energy ∆Eq of the ZnGaVN defect with charge q is calculated as:

∆Eq = Eq
sc −Ebulk(GaN)− µ(Zn) + µ(Ga) + µ(N)

+q[EF + ǫV BM(host)] (1)

with the chemical potentials µ(Zn), µ(Ga) calculated from their metallic states and µ(N)

taken from the N poor condition (µ(N) = Epercell
bulk (GaN)− µ(Ga)). EF is the Fermi energy,

with zero defined at the bulk valence band maximum (VBM) energy ǫV BM . The calculated

∆Eq are shown in Fig. 1. Note, since the GaN in the experiment is n-type, the ZnGaVN

center should be at its neutral state. Comparing ∆E0 with the separated ZnGa and VN

formation energies, we get the donor-acceptor binding energy as -0.79 eV. As a result, if

there are N vacancies and Zn impurities, they will always form ZnGaVN donor-acceptor

pairs. As shown in Fig. 1, the 2+/+ transition energy is higher than the +/0 transition

energy, forming a negative-U center, which is similar with MgGaVN center [30].

As discussed above, the ZnGaVN center is neutral in an n-type GaN with it electronic

states fully occupied. For it to be a nonradiative decay center, it will first accept a hole

becoming + charged. This + charged center will be quickly neutralized by the majority

electrons in the conduction band. Thus, the bottleneck, and the rate of the nonradiative

decay will be determined from the hole to ZnGaVN process. Our HSE calculated transition

energy for this process is 0.91 eV as shown in Fig. 1. The relevant electron-phonon coupling

should be between the impurity states and the valence band states, which can be represented

by the VBM state. The impurity state wave function is illustrated in Fig. 2 in a 299 atom

supercell.

There are different theoretical treatments for the multi-phonon assisted electronic tran-

sitions. In particular, there are adiabatic approximation treatments [10, 31, 32], and static

coupling theory treatment [13, 33]. As pointed out by Huang [34], these two approaches

can be unified. In the current work, we will adopt the formula derived by K. F. Freed and

J. Jortner [13] based on the static coupling approach using techniques similar to that of

Lin [11]. Their formula is originally derived for large molecules for semi-continuous phonon

density of states (DOS). It should be perfectly applicable to bulk systems like ours. We

will use the strong coupling limit formula, with its justification given in the supplementary

material. In this formula, the electron transition rate between electron states s and l can be
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expressed as:

Wsl =
∑
k

|Ck
sl|2ωk(2π)

1/2

2~D
[(coth yk + 1)

× exp(−(∆Esl − ~ωk −EM )2

2D2~2
) + (coth yk − 1)

× exp(−(∆Esl + ~ωk − EM)2

2D2~2
)] (2)

where k is the index of phonon mode with frequency ωk, and D2 = 1
2

∑
j ω

2
j∆

2
j (2n̄j + 1),

n̄j = [exp(β~ωj)− 1]−1, ∆j = (
Mjωj

~
)1/2(Q

0(s)
j −Q

0(l)
j ) and yk = β~ωk/2, β = 1

kT
. Here Q

0(s)
j

and Q
0(l)
j are the relaxed ground state coordinations of phonon mode j at electron states

s and l, which can be calculated as Q
0(s,l)
j = 1√

Mj

∑
RMRµj(R)R

0(s,l), here R0(s,l) are the

relaxed atomic positions at electron states s and l, and µj(R) is the jth phonon mode (see

Eq. (4)) with a normalization of
∑

RMRµk(R)µj(R) = δk,j, MR is the atom mass (here R is

used to denote the atom). Mj is the phonon mass, which can be arbitrarily defined without

affecting the final result. EM = 1
2

∑
j ~ωj∆

2
j is the reorganization energy (atomic relaxation

energy after electron state transition). The ∆Esl equals the total energy change between

the atomic relaxed l and s electron states, hence 0.91 eV in our case (Fig. 1). Ck
sl is the

coupling constant between electronic states s and l, and the phonon mode k, which will be

discussed later.

The Eq. (2) implies that only a single mode phonon (promoting mode) and a single

phonon of that mode is responsible in inducing the s to l transition in a given term of the∑
k sum, while the role of all the other phonon modes ”j” (accepting modes) is to create

or annihilate phonons due to Q
0(s)
j −Q

0(l)
j 6= 0 to satisfy the energy conservation law. For a

given phonon mode, it can be the promoting mode in one term of
∑

k, while being accepting

mode in other terms. The electron phonon coupling constant in Eq. (2) between electronic

states s and l and phonon mode k is:

Ck
sl =

i~
∑

R µk(R)〈ψs|(∂H/∂R)|ψl〉
∆Esl

(3)

The connection of this formula to the original formula in Ref. [13] is given in the supple-

mentary material. In order to use Eqs. (2)(3), we need to calculate: (a) the phonon mode

µk(R) and its frequency ωk; (b) the coupling constants 〈ψs|(∂H/∂R)|ψl〉. The reorganization
energy EM can be obtained directly by first calculating the neutral impurity ZnGaVN and

its relaxed atomic coordinates R
(0)
l , then relax from this atomic configuration to get the +
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state atomic configuration R
(0)
s and record the energy drop (EM). Our HSE calculated EM

is 0.43 eV. In the following, we will use novel methods to calculate both (a) and (b).

To get the phonon spectrum, we can diagonalize the dynamic matric:

M(R1, R2) =
1

(MR1
MR2

)1/2
∂2E

∂R1∂R2
(4)

The kth eigen vector of M will be M
1/2
R µk(R), and eigen value will be (~ωk)

2. Note

∂2E/∂R1∂R2 = ∂FR1
(R2)/∂R2, thus we can numerically displace atoms R2, while using

Hellman-Feynman theory to calculate the atomic forces FR1
(R2) for all the atoms R1. How-

ever, for a 299 atom supercell as we have above, this means 299 × 3 = 897 selfconsistent

field (SCF) DFT calculations.

Here we will use an approximation to get ∂2E/∂R1∂R2. First note that, if there is no

impurity in the 5×5×3 supercell, all the Ga and N atoms are equivalent respectively. Thus

only 6 displacements are needed to get all the ∂2Ebulk/∂R1∂R2. We found that even when

there is an impurity, when both R1 and R2 are away from the impurity ( beyond a cut off

distance Rc ), the ∂
2E/∂R1∂R2 can be approximated by ∂2Ebulk/∂R1∂R2. This good agree-

ment is shown in Fig. S3 of the supplementary material. As a result of this approximation,

there are only 8 atoms R2 within a Rc (=6.0 a.u.) radius surrounding the impurity, which

need explicit numerical displacements to calculate their ∂2E/∂R1∂R2. The accuracy of the

final ”combined dynamic matrix” (CDM) is further enhanced by enforcing the symmetry

condition: ∂2E/∂R1∂R2 = ∂2E/∂R2∂R1 and the sum rule:
∑

R1
∂2E/∂R1∂R2 = 0.

The calculated phonon DOS are shown in Fig. 3. The bulk phonon DOS agrees well

with other published phonon spectrum [35–37]. For the 71 atom cell, we have compared

the CDM method with the explicit full calculation. We see that the CDM describes well the

change from bulk DOS to the impurity case DOS. From the 299 atom results, we see that

there are some localized phonon peaks near the lower edge of the optical phonon DOS.

Having obtained µk(R) and ωk, let’s now turn our attention to the calculation of electron-

phonon coupling constant Fs,l(R) = 〈ψs|(∂H/∂R)|ψl〉. In our case, l is the VBM state,

while s is the impurity state as shown in Fig. 2. For a plane wave pseudopotential (PWP)

calculation, there are two contributions to ∂H/∂R, whereH = −1
2
▽2+Vtot+

∑
l,R |φl,R〉〈φl,R|.

The first one comes from the nonlocal pseudopotential operator
∑

l,R |φl,R(r−R)〉〈φl,R(r−
R)|, with l being the angular momentum, which does not depend on the selfconsistent

calculation, hence can be calculated quickly (much like in the atomic force calculations).
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The second contribution comes from ∂Vtot(r, R)/∂R, where Vtot(r, R) is the selfconsistent

LDA (or GGA) total potential for a given atomic configuration {R}. If this is going to

be calculated directly using numerical displacements, each atomic displacement will need

to have a SCF calculation. Then in total 299 × 3 = 897 SCF calculations will be needed.

However, we will introduce a new algorithm to calculate all these electron-phonon coupling

constants at once.

We first define the second contribution (for the Vtot term) as

FL
sl (R) =

∫
Re[ψ∗

s (r) · ψl(r)]dVtot(r)/dR× dr (5)

Let’s define ρsl(r) = Re[ψ∗

s (r) · ψl(r)] as a fixed charge density. Then, we can define

ρλ(r) =
∑
iǫV B

ψ2
i (r) + λρsl(r) (6)

and use ρλ(r) in the expression of the LDA potential energy U (containing electron-ion,

Coulomb and exchange-correlation energies), we have:

E[ψ,R, λ] = −1

2

∑
i

〈ψi| ▽2 |ψi〉

+
∑
i,l,R

〈ψi|φl,R〉〈φl,R|ψi〉+ U [ρλ, R] (7)

Here ψi are Kohn-Sham orbitals. Now, we can variationally change ψi to minimize total

energy E, while keeping ρsl(r) fixed. The SCF calculation is essentially the same as in any

given electronic structure codes (we have used our PEtot [38] for this calculation). We then

have ∂E/∂ψi = ǫiψi, hence 〈∂E/∂ψi|∂ψi/∂X〉 = 0 (here X can be R or λ). Let’s use FR to

denote the atomic force on atom R, then we have:

d

dλ
FR =

d

dλ

d

dR
E[ψ,R, λ]

=
d

dR

d

dλ
E[ψ,R, λ]

=
d

dR
{
∑
i

〈 ∂E
∂ψi

|∂ψi

∂λ
〉+ ∂

∂λ
E}

=
d

dR
{ ∂

∂ρλ
U [ρλ, R]

∂

∂λ
ρλ}

=

∫
d

dR
{Vtot(r, R)× ρsl(r)}dr

=

∫
ρsl(r)dVtot(r)/dR× dr

= FL
sl (R) (8)
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Note the atomic force FR can be calculated for all atoms at once, using Hellman-Feynman

theory as in conventionally SCF DFT calculations:

FR =

∫
ρλ(r)dVion(r)/dR · dr

+
∑
i,l,R

2Re{〈ψi|
d

dR
φl,R〉〈φl,R|ψi〉} (9)

Thus, following the above procedure, with two SCF calculations (one λ = 0 and another

λ = small), we can get all the electron-phonon coupling constants FL
sl (R). Such calcu-

lated FL
sl(R) has been compared with directly calculated value with numerically obtained

dVtot(r, R)/dR (from two R values) in Eq. (5), the results are exactly the same within the

numerical accuracy.

With the above calculated Ck
sl, we can now use Eq. (2) to calculate the nonradiative

transition rate. In an actual device, all the hole states should have a finite k-point very close

to Γ point. With room temperature, the corresponding k is about 0.05 Å−1. As a result the

phase factor exp(ik ·r) within the localization range of the impurity state ψim is always close

to one (within a 10% error). Thus, we can always use ψV BM to represent the hole state ψl,

and ψim is the final state ψs.

Wsl from Eq. (2) is the transition rate for the VBM state to the impurity state, which

is often written as BpNt for a bulk system [3], here Nt is the impurity density and Bp is

a capture rate constant. In our case, Nt = 1/V (V is the volume of the supercell), hence

Bp = Wsl ·V . Note, in our calculation, Wsl will inversely scale with the supecell size, but Bp

does not. The results of Bp from 71 atom cell and 299 atom cell are shown in Fig. S4(a).

They differ by a factor of 1.5. This means the 71 atom cell is not converged, thus the use of

299 atom cell is necessary.

According to Eq. (2), we can analysis the contribution to the capture rate constant from

different promoting phonon modes. This is shown in Fig. 3(d) for room temperature. We

see that, most of the contribution comes from the optical phonon modes. On the other hand,

the total contribution of the localized phonon mode is relatively small. We also plot ∆2
j in

Fig. 3(e), which represents the energy stored in each mode in the unit of phonon energy due

to the atomic position changes after the electron transition. The D2 = 1
2

∑
j ω

2
j∆

2
j (2n̄j + 1)

describes the accepting mode coupling strength in the system, with n̄j shown in Fig. 3(f).

We thus see that while the promoting modes come mostly from the optical modes (Fig.
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3(d)), the energy conserving accepting modes come mostly from the acoustic modes (Fig.

3(e)). The existence of these acoustic modes in a solid system also makes the D~ relatively

large (296 meV in our case) compared with a molecule system[15].

We have studied the transition rate dependence on the impurity energy and temperature.

If we fix everything else in Eq. (2), while only change the transition energy ∆Esl, we will

have a sensitive dependence on ∆Esl as shown in Fig. 4 especially for small temperature.

We have also plotted the transition rate dependence on the temperature in Fig. 4. For

small ∆Esl, the temperature dependence is small. For large ∆Esl, Bp increases with T

as exp(−∆Esl/kT ) when T>100K. This is due to the excitation of acoustic phonons for

T>100K, and their roles as the accepting modes. Bp are constants when T<100K. In that

temperature regime, most transitions come from phonon modes self emission. Using our

calculated ∆Esl of 0.91 eV, we have Bp = 5.57× 10−10cm3/s at room temperature, and this

is near the low end of the experimentally measured range of Bp, which varies from 3×10−10

to 3 × 10−6 cm3/s [5, 9]. Our calculated Bp can be used in the SRH formula, where the

total hole capture rate is Upc = Bp · p ·Nt · ft [3], where p is hole density, Nt is trap density,

and ft is the probability that the trap is occupied by electron, which is close to 1 in our

case.
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FIG. 1. (Color online) The formation energy of ZnGaVN at different charge states calculated under

HSE, and the atom structure for the ZnGaV
+
N is shown in inset. EF is the electron Fermi energy.

EF zero is defined at the valence band maximum.
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calculated using HSE DFT functional.
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calculated by using the CDM with Rc=6.0 a.u. , (c) for ZnGaV
+
N in 299 atoms and using the CDM

with Rc=6.0 a.u. , (d) the contribution to Bp from different promoting phonon modes, (e) the

contribution to ∆2
j from different accepting phonon modes, and (f) the contribution to n̄j from

different phonon modes.
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