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One of the most challenging and basic problems in elastic rod dynamics is a description of rods
in contact that prevents any unphysical self-intersections. Most previous works addressed this issue
through the introduction of short-range potentials. We study the dynamics of elastic rods with
perfect rolling contact which is physically relevant for rods with rough surface. Such dynamics
cannot be described by the introduction of any kind of potential. We show that, surprisingly, the
presence of rolling contact in rod dynamics leads to highly complex behavior even for evolution of
small disturbances.
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Introduction Take two rubber strings, stretch them a
bit and cross them so they remain in contact, as shown
on Figure 1. As long as the deformations are not too
large, the strings will roll at the contact without sliding.
Of course, that simple experiment is dominated by the
energy loss from the internal deformation of strings at the
contact point; however, improving the quality of strings
will allow them to oscillate for a reasonable time before
the energy loss takes over. Interestingly, this simple and
familiar experiment has deep mathematical and physical
implications that go beyond a toy problem.

There are many objects that can be represented as
long elastic rods, from a rubber hose to DNA molecules.
Typically, if these objects are put in a confined space, or
undergo other non-trivial dynamics, self-contact of these
rods typically appears. The true dynamics will not al-
low the rod to pass through itself, and it must preserve
the side of contact under dynamics. While it is gener-
ally accepted that something like DNA at contact will
slide freely, the dynamics of other molecules like den-
dronized polymers (DP) may be different. These com-
pound molecular structures are formed by assembling
multiple dendrons that are each connected by its base
to a long polymeric backbone [1]. A simplified, coarse-
grained rod model of such polymers must take into ac-
count the rough surface formed by tree-like structures

FIG. 1: A sketch of two strings in contact. The line going
through the centers of contact disks r1 and r2 passes through
the contact point. Contact reaction force is denoted as λ.

that is likely to generate perfect rolling contact. Another
case when the rods will be rolling rather than sliding at
contact can be realized for highly adhesive surfaces. A
simple physical estimate demonstrates how essential that
phenomenon is. Suppose two (macroscopic) elastic rods
in contact have coefficient of dry friction of k. For micro-
scopic objects like DPs, the roughness of the rod’s surface
will introduce an effective value of k, although the exact
value is not yet available in the literature. If the force due
to contact λ (see below on how to compute that force)
has a normal component to the surface λn and the tan-
gential component λτ , then rolling contact occurs when
|λτ | ≤ k|λn|. Thus, whenever the contact force lies in
the cone with the opening angle arctank with respect to
the line connecting the centers, the contact will be rolling
rather than sliding. For example, for a highly compacted
configurations of a rod with many self-intersections, there
will be a large fraction of contacts where the reaction
force enforces rolling at contact; assuming that each con-
tact generates a force that is uniformly randomly dis-
tributed within a hemisphere of possible forces enforcing
contact, we conclude that the fraction of contacts expe-
riencing rolling is ∼ 0.5k/

√
k2 + 1. Even for the rather

small value of k ∼ 0.2, approximately ∼10% of contacts
will be rolling; larger values of k ∼ 1 gives that the rolling
contacts will be encountered in ∼30% of cases.

Efficient numerical methods have been developed re-
cently to deal with the self-contact forces of rods using
short-range repulsive potential for statics [2] and dynam-
ics [3–5]. Another avenue of studies of stationary states
of elastic rods with self-contact [6–10] explicitly computes
the contact forces from the existence of constraints. In
our case, the rolling contact comes from friction, which
does not admit any potential description. Thus, earlier
works on rod dynamics based on nonlocal potential forces
[11, 12] cannot be extended to the case of rolling contact.
The extension of the latter approach to include the dy-
namics, and especially the rolling constraint is difficult.
We also note that the true motion may be a combination
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of rolling and sliding friction, but in the absence of a con-
sistent theory for rolling slippage we shall concentrate on
the perfect rolling only. Our solution of the problem of
rolling contact is similar in spirit of the second approach,
as the contact force comes naturally from the constraint
and not from short-range forces.
Setup of the problem As is well known [13], the prob-
lem of rolling motion is essentially non-holonomic and, in
general, cannot be represented from the potential point
of view. We shall note that it is possible to define poten-
tial approach to some non-holonomic systems [14]. How-
ever, these cases seem to be more of an exception rather
than a rule. For the problem in hand, we proceed with
the Lagrange-d’Alembert (LdA) principle which is the
fundamental method for the treatment of non-holonomic
systems [13, 15]. Similar approach has been recently used
to describe the motion of an elastic rod rolling on a plane
[16]. In order to utilize LdA, we recast the motion of the
rods in variational setting through the Simo-Marsden-
Krishnaprasad (SMK) rod theory [17], which allows a
variational formulation of string dynamics [11]. The rod
is parameterized by a coordinate s that does not have to
be arc length. We fix a reference frame and measure the
local position r(s, t) and orientation Λ(s, t) at time t with
respect to the fixed frame. SMK theory formulates the
dynamics in terms of the variables that do not depend
on the choice of basic frame:

Γ = Λ−1r′ , Ω = Λ−1Λ′ , γ = Λ−1ṙ , ω = Λ−1Λ̇ . (1)

Here, the prime denotes the partial derivative with re-
spect to s and dot the derivative with respect to t. The
physical meaning of γ and ω is the linear and angular
velocity in the body frame of reference, and Γ and Ω
the corresponding deformation rate. If `(Γ,Ω,γ,ω) is
the Lagrangian, then the equations of motion for a free
elastic rod are given by the variational principle [11]

δ

∫
`(Γ,Ω,γ,ω)dsdt = 0 , (2)

appropriately computing the variations of variables
(Γ,Ω,γ,ω). In the case of constraints, this variational
principle (2) has to be modified according to the LdA
approach as follows. Assume, for simplicity, that the un-
deformed rod has a circular cross section and the acting
forces are small enough so that the cross-section remains
circular even at contact. Thus, if the strands at contact
can be approximated by touching circular cylinders, then
the contact point is always located at c(t) = (r1 +r2)/2,
and the vector from the center of the cylinder ri(t) to the
contact point is ±(r2 − r1)/2. Here, the index i = 1, 2
means evaluation at s = si marking the disks at contact.
Since the angular velocity in the fixed frame is Λ̇iΛ

−1
i ,

i = 1, 2, then the velocity of the material point associ-
ated with contact, also in the fixed frame, is

ṙ1 +
1

2
Λ̇1Λ−11

(
r2 − r1

)
= ṙ2 −

1

2
Λ̇2Λ−12

(
r2 − r1

)
(3)

This condition can be reformulated in terms of invariant
variables by multiplying (3) by Λ−11 :

γ1 +
1

2
ω1 × κ12 = ξ12γ2 −

1

2

(
ξ12ω2

)
× κ12 , (4)

where ξ12 := Λ−11 Λ2 is the relative orientation, κ12 =
Λ−11 (r2 − r1), and other invariant variables are defined
as in (4), with the index i meaning evaluation at s = si.
Note that due to the uniformity of the strand, and the
assumption of circular cross-section, the Lagrangian does
not depend explicitly on si and ṡi. Then, LdA principle
states that one has to replace time derivatives only in (4)
by δ-variations and use that expression as an additional
constraint on (δΓ, δΩ, δγ, δω) in (2). For example, γ1 =
Λ−11 ṙ1 → Λ−11 δr(s)δs1 and similarly for other variables.
Here we have denoted, for shortness, δsi := δ(s − si).
There is an unfortunate collision of notation in δ between
the variational derivatives and Dirac’s δ-functions; in this
paper, the δ-function always has a subscript. Denote
by λ(t) a vector that enforces the LdA constraints, and
by D/Dt := ∂t + ω×, D/Ds := ∂s + Ω× the full t- and
s- derivatives. We get the following equations for the
motion of strings with rolling contact:

D

Dt

∂`

∂γ
+

D

Ds

∂`

∂Γ
= λδs1 − ξ−112 λδs2 (5)

D

Dt

∂`

∂ω
+

D

Ds

δ`

δΩ
=
∂`

∂γ
× γ +

∂`

∂Γ
× Γ

+
1

2
κ12 × λδs1 +

1

2
ξ−112

(
κ12 × λ

)
δs2 . (6)

The physical meaning of λ as the force due to the con-
straint is now evident from the linear momentum (5).
Correspondingly, the λ terms in equation (6) are iden-
tified as torques acting on the contact point due to the
presence of the constraint. These equations have to be
augmented by the compatibility conditions

Γ̇ = γ′ − ω × Γ + Ω× γ
Ω̇ = ω′ + ω ×Ω .

(7)

We still have to close the system by computing the equa-
tions of motion for the contact points si, which is done
from the tangency conditions stating that the strand at
a contact point, which is locally a cylinder, touches itself
tangentially and there is no intersection of the material.
These conditions state that

κ12(s1, s2, t) ·E3
1 = 0, κ12(s1, s2, t) · ξ12E3

2 = 0, (8)

where E3
i is the axis of the i-th rod in that rod’s coordi-

nate frame, assumed to be constant. Note that these ex-
pressions do not contain any time derivatives of the vari-
ables and are thus holonomic. They also imply that the
distance between the centers of disks in contact |r1− r2|
is preserved. Since the Lagrangian ` does not depend on
si and ṡi, they can be imposed after the equations have
been derived. In principle, such conditions already deter-
mine si through an implicit relation; however, they are
difficult to use. Instead, time derivatives of (8) give
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A · (ṡ1 , ṡ2)T + v = 0 , (9)

where the 2×2 matrix A and 2-vector v depends on the
dynamical properties at contact, with det(A) 6= 0 when
the rods are not locally parallel at the contact. Equa-
tions (5,6) and the conditions (8,9) give the complete sys-
tem of equations of elastic rods in rolling contact. These
equations are different from earlier works as they take
into account the forces caused by rolling conditions.
Discrete strands in contact It is also interesting to
consider the application of this theory to discrete, chain-
like elastic structures in contact. In that case, we need
to clarify the physical meaning of the δ-function at the
contact position. Apart from its physical relevance, this
consideration is also useful for consistent numerical dis-
cretization of (5,6). Here, care must be taken in deriv-
ing the equations of motion without breaking their vari-
ational structure [18]. Suppose that we have a string
consisting of discrete set of points along the line, s = sk,
with k being integer. If the orientation and position of
a material frame at s = sk are given by an orientation
matrix Λk and a vector rk, the invariant variables are
pk = Λ−1k Λk+1 and qk = Λ−1k (rk+1 − rk). The purely
elastic Lagrangian is ` = `(ωk,γk, pk, qk). One also
needs to define a ”smeared-out” version of (4):

αk
(
γk +

1

2
βmωk × κkm

)
−αkβm

(
ξkmγm −

1

2
(ξkmωm)× κkm

)
= 0 , (10)

(summation over k,m). Here, we have defined the aver-
aging coefficients: αk := G

(
s1 − sk

)
, βk := G

(
s2 − sk

)
arising from a ”bump” function G(s) that rapidly de-
cays away from s = 0, and ξkm := Λ−1k Λm, κkm :=
Λ−1k

(
rm − rk

)
. Note that the positions of the contact

is defined by the continuous variables s1 and s2. Here,
the width of G(s) corresponds to the size of discrete el-
ements on the string or, for numerical discretization, to
the distance along s between the discrete points of the
rod. The function G(s) should satisfy three criteria: a)
it is sufficiently smooth in order to avoid artificial ac-
celerations of si; b) having a single maximum so there
is no ambiguity about the position of contact; and c)
decaying rapidly so as not to introduce any long-term in-
teractions between the contact points on the rod. The
physical meaning of (10) consists in spreading the point
wise contact condition (4) to a few neighboring points
surrounding the contact. Then, the LdA principle gives
a discrete analogue of (5,6):

D

Dt

∂`

∂γk
−p−1k−1

∂`

∂qk−1
+
∂`

∂qk
=
∑
m

(
αmβkξ

−1
mk−αk

)
λ, (11)

D

Dt

∂`

∂ωk
+

∂`

∂pk
p−1k − p

−1
k−1

∂`

∂pk−1
=

∂`

∂γk
×γk+

∂l

∂qk
×qk

−
∑
m

1

2

(
αkβmκkm×λ+βkαmξ

−1
mk

(
κmk×λ

))
. (12)

For a Lagrangian that is quadratic in all variables, cor-
responding to linear elasticity, an explicit computation
of λ in (11,12) is possible, but cumbersome. Equations
(11,12) are augmented by conditions for the variables s1
and s2 similar to (9) obtained by differentiating a dis-
crete version of (8). Note that one could have, in princi-
ple, guessed the equations of motion for continuum rods
in contact (5,6) using the standard Kirchhoff model and
physical intuition, but we do not see any way to derive
equations (11,12) without using the methods of this pa-
per.
Linear strings in contact One may wonder if the equa-
tions of motion we have derived allow to deduce analyt-
ical expressions for the propagation of the disturbances
along the rods at contact, such as the dispersion rela-
tion. The answer to this question is, unfortunately, no:
the contact condition makes the disturbances essentially
nonlinear. Let us consider two strings in contact, and
denote for shortness a = (γ,ω)T and A = (Γ,Ω)T . For
linear elastic materials ∂`/∂a = Va and ∂`/∂A = −QA,
where V and Q are 6x6 matrices. The linearized compat-
ibility conditions (7) allow to introduce a vector potential
φ as a = ∂tφ, A = ∂sφ. Neglecting all nonlinear terms in
the dynamic variables and assuming that the rod is nat-
urally straight in its undeformed state, we can transform
(5,6) into a vector wave equation [19]

V
∂2φ

∂t2
−Q∂

2φ

∂s2
=

(
Id

1
2κ12×

)
λδs1+ξ

−1
12

(
−Id
1
2κ12×

)
λδs2 . (13)

The condition (4) can be expressed in this vector form as(
Id,−1

2
κ12×

)T
φt(s1, t)=

(
ξ12,

1

2
κ12×ξ12

)T
φt(s2, t) (14)

Thus, the evolution of small disturbances on the rod
is governed by linear equations (13), linear rolling con-
straint (14) and nonlinear evolution equations for s1,2
(9). We can illustrate the complexity of this problem
on a pedagogical simplistic example of two straight rods
in contact with only one mode being relevant in (13)
for each rod. The one-dimensionality of disturbances
is chosen just for the simplicity of computations. The
chaotic behavior comes from the nonlinearity of coupling
the forcing in equations (13) to the solution through the
contact conditions (9), and is independent on the dimen-
sionality of the system. Physically, such a mode can be
realized for a rod with special elastic and inertia matri-
ces V and Q, e.g. for rods made out of composite mate-
rial. No further simplifications of equations or analytical
progress is possible. Thus, the answer to a deceptively
simple question on how the disturbances propagate along
the rod is surprisingly complex, and is due exclusively to
the contact condition.

Let us denote by u(x, t) and v(y, t), the one-
dimensional deflection for the first and second rod, re-
spectively. In this case, the rolling constraint and the
motion of the contact points are written simply as
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ut(s1) = Fvt(s2) , ṡi = Giut(si) , i = 1, 2 , (15)

where F and Gi are constants depending on the material
parameters and the base state of the rods. The equations
of motion for (u, v) in this reduced setting are:

utt − c2uxx + λδs1 = 0 , vtt − c2vyy − λFδs2 = 0, (16)

where λ enforces the first constraint of (15).
A discrete version of these equations can be derived,

similarly to the full equation described above in (12). We
shall emphasize that the complexity caused by the non-
linear contact conditions is the same in the full equation
(13) and its one-dimensional counterpart (16). While the
complex dynamics caused by the nonlinear rod equations
have been well studied, as far as we are aware, there has
been no work on the complex dynamics caused by the
rolling contact condition. In the absence of constraints,
the wave equations provide a simple harmonic oscillation
of the string. However, when the constraint is present,
the motion of the string is challenging and complex.
Contact chaos In the case when the boundary condi-
tions for the strings are periodic, exact solution of equa-
tions can be found, which we omit here. In the more
realistic fixed boundary conditions for u and v, the be-
havior is highly complex. The motion, as one can show
from equations (16), conserves energy; however, in real-
ity, friction with air and, more importantly, rolling fric-
tion will lead to energy dissipation. It is nevertheless
interesting to see the structure of that dynamics, with
the nonlinearity obtained only from the contact condi-
tion. As we see from Figure 2, the system produces a
complex spatio-temporal dynamics of both strings. It
is also relevant to present another measure of complex-
ity, computed from the dynamics of the base harmonic
of u(x, t), call it û1(t), as a function of t. If the string
were vibrating in the air, the sound sufficiently far away
from the string will primarily contain the contribution
from the first harmonic. On Figure 2, right, we plot

FIG. 2: Left: the initial spatio-temporal evolution of one of
the strings in contact, with the red line marking the point of
contact. The color, dark blue to white, denotes the deviation
of the string from its equilibrium position, from high positive
to high negative. Right: spectrum S(ω) vs ω/ω0 of time
signal produced by the lead harmonic (in x) of u(x, t), with
ω0 = 2πc/l being the basic frequency of a string without
contact.

the time spectrum S(ω) as a function of temporal fre-
quency ω, obtained from the time signal of the first har-
monic û1(t). Starting with u(x, 0) = sinx, a linear rod
with 0 < x < 2π without rolling contact will generate a

purely monochromatic signal; however, when the contact
is present, there is a persistence of high overtones to the
signal. A sound file in the supplementary materials gives
the reader an impression about the quality of that sig-
nal. We have found out that the chaotic behavior caused
by the contact condition persists for all initial conditions
we have tried. The appearance contact-caused chaos is
highly interesting and important for many physical ap-
plications, and yet it has not been discussed previously.
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