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Light at a magic-zero wavelength causes zero energy shift for an atom. We measured the longest
magic-zero wavelength for ground state potassium atoms to be λzero = 768.9712(15) nm, and we
show how this measurement provides an improved experimental benchmark for atomic structure
calculations. This λzero measurement determines the ratio of the potassium atom D1 and D2 line
strengths with record precision. It also demonstrates a new application for atom interferometry, and
we discuss how decoherence will fundamentally limit future measurements of magic-zero wavelengths.
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The light-induced energy shift of an atom depends on
the light wavelength, and there exist magic-zero wave-
lengths for which the energy shift vanishes [1, 2]. A
magic-zero wavelength (λzero) is found between atomic
resonances, where the light is red-detuned from one res-
onance and blue-detuned from another. Opposing con-
tributions from these resonances produce a root in the
energy shift spectrum at λzero. In this Letter we report a
measurement of a magic-zero wavelength made with an
atom interferometer.

LeBlanc and Thywissen [1] referred to λzero as tune-out
wavelengths and discussed their utility for multi-species
atom traps. Since then, various λzero have been used in
experiments to study entropy exchange [3], quantum in-
formation processing [4], and diffraction of matter waves
from an ultracold atom crystal [5]. However, the light
used in experiments [3–5] to minimize energy shifts can
be hundreds of picometers different than the λzero values
calculated in [1, 2] due to impure optical polarization.
LeBlanc and Thywissen predicted a λzero for each alkali
atom with 10 pm precision based on the wavelengths of
their principal (D1 and D2) transitions. More recently,
Arora et al. [2] predicted magic-zero wavelengths using
state-of-the-art atomic theory calculations of dipole ma-
trix elements for several transitions in each atom, includ-
ing core electron excitations. For the λzero we measured,
Arora et al. stated a theoretical uncertainty of 3 pm. In
comparison, our measurement has an uncertainty of 1.5
pm. Because calculations of dipole matrix elements sim-
ilar to those used in [2] are needed to calculate static
polarizabilities, state lifetimes, line strengths, van der
Waals potentials, and magic wavelengths [6–8], we are
motivated to explore how measurements of magic-zero
wavelengths can serve as new benchmark tests of atomic
structure calculations.

In this Letter we present a measurement of the magic-
zero wavelength for potassium between the 770 nm (D1)
and 767 nm (D2) transitions. Our measurement of
λzero = 768.9712(14)stat(6)sys nm is a novel test of atomic
structure calculations and provides the most precise de-
termination yet of the ratio of the D1 and D2 line

strengths S1 and S2. We find the ratio

R =
S2

S1
=
|〈4s||D||4p3/2〉|2

|〈4s||D||4p1/2〉|2
= 2.0005(40). (1)

The ratio of degeneracies for the excited states would
make R = 2, however, relativistic corrections slightly re-
duce the predicted ratio to R = 1.9987 [9]. Our mea-
surement is consistent with the prediction in [2], and our
measurement uncertainty is half as much as the theoret-
ical uncertainty quoted in [2].

Most measurements of static and dynamic polarizabili-
ties [10–14] are limited by uncertainty in the electric field
strength and uncertainty in the time an atom interacts
with the field. However, our measurement of the wave-
length at which the polarizability is zero is not subject to
uncertainty from these factors. Instead, we will discuss
systematic errors in λzero measurements caused by laser
spectra, and statistical limitations caused by contrast loss
and small (mrad/pm) phase shifts near λzero.

The longest magic-zero wavelengths for alkali atoms
are determined mostly by the transition energies ~ω1 and
~ω2 and the ratio R of the line strengths. We use the
sum-over-states approach to describe the dynamic polar-
izability α(ω) near these two transitions by

α(ω) = 1
3~S1

(
ω1

ω2
1−ω2 +R ω2

ω2
2−ω2

)
+A (2)

where A accounts for contributions from core excitations,
higher energy valence transitions, and core-valence cou-
pling [6, 15]. At the longest magic-zero wavelength of
potassium, A is 0.02% of the nearly equal and opposite
contributions from the principal transitions to the polar-
izability and A changes λzero by 0.15(1) pm [9]. There-
fore, the uncertainty in this magic-zero wavelength cal-
culation is nearly entirely determined by uncertainty in
the ratio of the line strengths, R.

The line strengths S1 and S2, and thus R, can also
be determined from state lifetime measurements. To our
knowledge, the most precise independent measurements
of the 4p1/2 and 4p3/2 state lifetimes were performed by
Volz et al. using beam-gas-laser spectroscopy [16]. They
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reported lifetime uncertainties of 0.25% and a similar un-
certainty for R (which leads to a 2 pm uncertainty in
λzero). In comparison, our measurement of R has an
uncertainty of 0.20%. State lifetimes can also be derived
from molecular or photoassociation spectroscopy [17, 18].
However, these spectroscopy experiments [17, 18] do not
distinguish between the 4p1/2 and 4p3/2 state lifetimes
(they depend on an average) so they cannot be used to
determine R nor λzero.

To measure the magic-zero wavelength, we focused 500
mW of laser light asymmetrically on the paths of our
three grating Mach-Zehnder atom interferometer [19–21].
Atom-waves propagating along each interferometer path
acquired a phase shift φ(ω) proportional to the dynamic
polarizability α(ω) at the laser frequency ω. We found
the laser frequency ωzero = 2πc/λzero at which the dy-
namic polarizability vanishes by measuring the phase
shift as a function of laser wavelength.

The phase shift φ0(ω) along one interferometer path is
given by

φ0(ω) =
α(ω)

2ε0c~v

∫ ∞
−∞

I(x, z)dz (3)

where v ≈ 1600 m/s is the atom velocity, I(x, z) is the
laser beam intensity (assumed to be monochromatic for
now), x is the transverse coordinate in the plane of the
interferometer, and z is the longitudinal coordinate. The
laser beam intensity was 400 W/cm2 (500 mW focused to
a beam waist of ≈ 200 µm). We measure the differential
phase shift φ(ω) for two components of the atomic wave
functions that are separated by 60 µm in our atom inter-
ferometer. Figure 1 shows the differential phase shift and
contrast of the interferometer as the laser wavelength is
scanned 5 nm across the D1 and D2 lines.

Equation (3) is useful for understanding the origin of
the phase shift, similar to φ(ω) shown in [11, 13]. But our
measurements of λzero do not depend on precise knowl-
edge of the atom beam velocity nor the focused laser
beam irradiance. Changes in these parameters would
only affect the magnitude of the phase shift, not the zero
crossing. Therefore, we reduce Eq. (3) to simply

φ(ω) = bα(ω), (4)

where b is a parameter proportional to the laser beam
intensity and the interaction time. To precisely measure
λzero, we studied phase shifts within 100 pm of λzero,
as shown in Figure 2. The laser power changed with
wavelength and drifted over time, so we monitored the
power incident on the atom beam and normalized the
measured phase shifts. We reproduced this 1 hr experi-
ment 35 times over a period of 5 days. We fit these data
to Eqs. (2) and (4), with R and b as the only free param-
eters. The precision with which we can determine λzero
is inversely proportional to the slope dφ/dλ. This slope
is typically 1 mrad/pm, and our phase uncertainty from
shot noise is δφ ≈ 1 mrad with 5 minutes of data.
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FIG. 1. (Color online) Measurements of the interferometer a)
phase shift φ and b) contrast C as a function of laser wave-
length. The measured phase shifts are normalized by the laser
power at that wavelength. The reference contrast C0 is shown
in black circles.
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FIG. 2. (Color online) Measurements of phase shift and laser
wavelength. Each point represents 5 minutes of data. The fit
uses Eqs. (2) and (4) described in the text, with free param-
eters R and b. R determines λzero.

Our reported measurement of the magic-zero wave-
length is the average of 35 individual measurements of
λzero after discarding the highest and lowest 10% of the
measurements. The reported statistical error (1.4 pm) is
twice the standard error of the mean of the trimmed data
set. Figure 3 shows the 35 λzero measurements and the
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FIG. 3. (Color online) 35 separate λzero measurements (blue)
and the trimmed mean (red). We assumed the statistical
errors of all measurements were the same, and we report twice
the standard error of the trimmed mean as the final statistical
error.

trimmed mean. Table I shows a summary of the error
budget and we discuss systematic errors associated with
the laser system below.

We generated 2 W of laser light using a MOPA sys-
tem [22, 23]. We used a Littrow ECDL with wavelength-
dependent pointing compensation [24] to keep the seed
light well-coupled into a tapered amplifier over a 5 nm
tuning range. A Bristol Instruments 621B wavelength
meter calibrated against a saturated absorption signal in
a vapor cell measured the vacuum wavelength of the seed
laser with an uncertainty of 0.3 pm.

After spatial filtering with a single mode fiber, 1% of
the power was in a broadband spectral component from
spontaneous emission in the tapered amplifier [25]. To
quantify the uncertainty in λzero caused by this broad-
band component, we characterized the laser spectrum
with a grating spectrometer and we accounted for the
laser spectrum by modifying Eq. (3) with an additional
integral over the frequency dependent laser intensity. We
calculated that the broadband light introduces an uncer-
tainty of 0.5 pm to our measurement of λzero.

We also measured the crossing angle between the laser
and atom beams, and applied a 0.56(5) pm correction to
λzero due to the Doppler shift. We note that our mea-
surement was performed on an atom beam with a natural
abundance of potassium isotopes. If we assume that R is
the same for 39K and 41K, then the measured λzero is pre-
dicted to be 0.03 pm less than the 39K λzero. Finally, we
calculated that at the intensity we are using, the hyper-
polarizability of the ground state causes a shift for λzero
on the order of 0.001 pm. This is negligible in our cur-
rent experiment but suggests an interesting opportunity
for future measurements of intensity-dependent shifts in
λzero due to higher order effects.

TABLE I. Magic-zero wavelength error budget.

Source of error λzero error (pm)
Laser wavelength 0.3
Broadband light 0.5
Polarization 0.1
Doppler shift 0.05

Total systematic error 0.6
Total statistical error 1.4

Total error 1.5

Contrast loss due to several factors analogous to in-
homogeneous broadening limits the precision with which
λzero can be measured. Averaging over the width of the
atom beam and accounting for +1 and -1 diffraction or-
ders from the 1st nanograting explains most of the ob-
served contrast loss in Figure 1(b) [19]. The velocity
spread of the atom beam (σv ≈ v0/15) slightly reduced
the observable contrast as well. The small contrast loss
due to light at λzero can be explained by unintended el-
liptical polarization of the laser beam. Circular polariza-
tion causes different Zeeman substates (mF ) to acquire
different phase shifts even at λzero. Averaging over all
8 |F,mF 〉 states in our experiment reduces the contrast
but introduces little error to λzero thanks to the equal
(thermally distributed) populations of allmF in our atom
beam. We allow for a conservative 0.1 pm uncertainty in
λzero due to unaccounted for effects such as quadratic
Zeeman shifts or optical pumping compounded with the
light polarization.

Because of the contrast loss from all these mechanisms,
if we could optimize our experiment just by increasing
the laser power without bound, we would only choose 10
times more power. Furthermore, this would only result
in 5 times better sensitivity, approaching 50 pm/

√
Hz.

If we had power to spare, one way to maintain higher
contrast would be to use a triangular mask for a large
area light beam. This would cause the differential phase
shift to be independent of position in the atom beam.

Next, we explore how photon scattering, analogous to
homogeneous broadening, imposes a fundamental limit
on the precision with which any magic-zero wavelength
can be measured, even in different types of experiments.
Atom interferometers are in principle ideal tools for
studying the small energy shifts that result from light
near λzero. However, magic-zero wavelengths may also be
measured with other methods. For example, atom loss
rates in an optical dipole trap would increase near λzero.
A Bose-Einstein condensate imprinted by a light beam
redder (or bluer) than the magic-zero wavelength may
produce light (or dark) solitons. Studying vortex excita-
tion probability from a laser stir-stick [26] may provide
another way to measure λzero in BEC systems. Atoms
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can diffract from an optical lattice near (but not at) λzero,
and atom beam deflections can be induced by light de-
tuned from λzero [12]. But all of these methods essentially
rely on changes to the center of mass motion for atoms,
or equivalently, changes to the de Broglie wave that rep-
resents this motion. Atomic clocks provide similar (pi-
cometer) precision for measurements of the magic wave-
lengths (λmagic) that depend on the differential light-shift
for two states [7, 8], but because clocks are affected by
shifts in both ground and excited states, they are less
ideal for measurement of magic-zero wavelengths (λzero)
discussed here. Furthermore, all of these proposed ex-
periments are limited by decoherence or heating due to
photon scattering.

To quantify this fundamental limitation due to deco-
herence in our experiment, let ∆i be the detuning from
resonance i, Ωi be the Rabi frequency, and T be the time
an atom is exposed to the laser beam. In the large de-
tuning limit (∆2

i � Ω2
i ) the slope dφ/dλ is proportional

to
∑

i TΩ2
i /∆

2
i whereas the phase uncertainty increases

exponentially with the same factor [27]. This indicates
that a more powerful laser or a longer interaction time
offers diminishing returns for the experimental sensitivity
to λzero. To minimize the shot noise limited uncertainty
in λzero we should increase the pulse area (IT ) until we
obtain a contrast reduction of C/C0 = e−1.

Our experiment could be significantly improved by in-
creasing the atom interferometer path separation so the
laser can be entirely focused (with homogeneous irradi-
ance) on one interferometer path. The elliptical polariza-
tion could be reduced by a factor of 105 by passing the
laser beam through a high quality polarizer immediately
before it crosses the atom beam, and the broadband light
component could be reduced by using a different type of
laser or filtering the light with a grating and aperture. In
this more ideal situation, decoherence is the only remain-
ing source of contrast loss. We calculated a maximum
achievable slope dφ/dλ of

dφ

dω
≈ 1

2Γ
Ps (5)

where Ps is the probability that an atom scatters one or
more photons and Γ is the excited state decay rate. With
optimized contrast loss due to scattering (Ps = 1− e−1)
the slope becomes as large as dφ/dλ = 40 rad/pm. In
this way, future measurements of magic-zero wavelengths
can be made with very high precision, possibly with ac-
curacy limited by a shot noise sensitivity better than pi-
cometers per

√
Hz with current technology. Perhaps this

can be achieved in an ultracold atom interferometer [11],
however such experiments typically would measure the
magic-zero wavelength of a particular |F,mF 〉 state and
therefore may be more sensitive to uncertainties in the
laser polarization and magnetic fields.

As an outlook, the λzero measurement presented here
provides a foundation for a new set of experimental

benchmarks that can be used to test atomic structure cal-
culations. Future measurements of several other magic-
zero wavelengths in potassium and other atoms can be
accomplished with similar techniques. For example, in
potassium atoms, two additional magic-zero wavelengths
occur near the 4s to 5pj transitions. One magic-zero
wavelength near 405.96(4) nm is between the 4s − 4p
and 4s−5p transitions, while the other magic-zero wave-
length near 404.72(4) nm is between the 4s − 5p1/2 and
4s − 5p3/2 transitions. Therefore, measurements of two
other λzero combined with the one reported here could
be used to specify ratios of four line strengths. However,
αcore (the largest component of the semi-empirical pa-
rameter A in Eq. (2)) more strongly affects λzero near 405
nm [9]. Therefore, new λzero measurements will also pro-
vide benchmark tests for the contributions from core elec-
trons to polarizabilities. Magic-zero wavelength measure-
ments in heavier atoms, where the fine-structure splitting
is larger, will be more sensitive to both core-electron con-
tributions and relativistic corrections to the line strength
ratio R. Measurements of hyperpolarizability may also
be accomplished by measuring energy shifts at magic-
zero wavelengths that depend on intensity-squared (i.e.
E4).

In summary, we measured the longest magic-zero wave-
length of potassium with 1.5 pm uncertainty. The mea-
sured phase shifts and resulting precision in λzero could
be increased by 3 orders of magnitude in future work by
focusing a laser beam entirely on one path of the atom
interferometer, more accurate measurements of the laser
spectrum, and more careful control of the laser polariza-
tion.

While preparing this manuscript, we became aware of
a recent λzero measurement in rubidium [28].
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