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Using the method of maximal cuts, we construct the complete D-dimensional integrand of the
five-loop four-point amplitude of N = 4 super-Yang-Mills theory, including nonplanar contributions.
In the critical dimension where this amplitude becomes ultraviolet divergent, we present a compact
explicit expression for the nonvanishing ultraviolet divergence in terms of three vacuum integrals.
This construction provides a crucial step towards obtaining the corresponding amplitude of N = 8
supergravity required to resolve the general ultraviolet behavior of supergravity theories.
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Recent years have seen remarkable progress in under-
standing and constructing scattering amplitudes in gauge
and gravity theories, driven largely by the advent of on-
shell techniques. The advances have had broad appli-
cations including computations in quantum chromody-
namics of multijet processes at the Large Hadron Col-
lider, resummations of planar N = 4 super-Yang-Mills
(sYM) amplitudes linking them to string theory via the
AdS/CFT correspondence, connections to integrability
of planar N = 4 sYM theory and studies of ultraviolet
(UV) and infrared diverges in gauge and gravity theories.
(See ref. [1] for recent reviews.)

These advances have been most striking for the max-
imally supersymmetric N = 4 sYM amplitude, in the
planar limit where the number of color charges is large.
Significant progress has also been made for the less well
understood nonplanar case, which is the subject of this
Letter. Nonplanar contributions to amplitudes in N = 4
sYM theory have been obtained previously through four
loops [2–7], along with detailed studies of their UV prop-
erties in higher space-time dimensions. The planar part
of the five-loop amplitude is found in ref. [8]. Here we
carry out a similar study for the five-loop four-point am-
plitude and analyze the UV divergences in the lowest di-
mension where they occur. We anticipate that our results
will become useful for detailed studies of the structure
of the theory, including infrared singularities, anomalous
dimensions and other observables related to amplitudes.
Such studies can be a useful laboratory for quantum chro-
modynamics, for example, to help resolve the full struc-
ture of infrared singularities (see e.g. ref. [9]).

Beyond the intrinsic interest for understanding N = 4
sYM theory, our construction of the five-loop four-point
amplitude is a key step towards obtaining the correspond-
ing amplitudes of N ≥ 4 supergravity, needed to help
resolve the long-standing question on the possible UV
finiteness these theories. In fact, whenever a represen-
tation of an N = 4 sYM amplitude is constructed that

exhibits a duality between color and kinematics [10, 11], a
simple pathway exists for obtaining correspondingN ≥ 4
supergravity loop integrands [5, 7, 12, 13]. In particu-
lar, the N = 8 supergravity integrand follows trivially
when the duality is manifest, simply by replacing color
factors with the kinematic numerators of the diagrams.
Although the form of the five-loop four-point amplitude
presented here does not manifest the required duality,
it does offer an excellent starting point for finding such
representations.
Explicit constructions of amplitudes have played a key

role for determining the UV divergence structure of gauge
and gravity theories as a function of dimension. N = 4
sYM theory is known [3, 14] to be UV finite in dimensions

D < 4 +
6

L
, (L > 1) (1)

where L is the loop order. This exhibits the well known
UV finiteness in D = 4 [15]. A remaining open question
is whether the bound (1) is saturated to all loop orders.
From explicit computations, it is known to be saturated
for L ≤ 4 [3, 4, 6, 7]. As commented on in ref. [6], the
L = 5 planar amplitude [8] also saturates the bound (1).
Below we give a simple expression for the divergence,
including nonplanar parts.
A related open question is whether maximally super-

symmetric N = 8 supergravity has the same finiteness
bound as N = 4 sYM theory, implying it is UV finite
in D = 4, or if it has a worse behavior. (For a re-
cent optimistic opinion see ref. [16]; for a recent pes-
simistic one see ref. [17].) Explicit calculations of the
divergences [3, 4, 7, 18, 19] and symmetry and other ar-
guments [20] show that through four loops the bound (1)
holds in N = 8 supergravity. Beyond this, the argu-
ments suggest that N = 8 supergravity will have a worse
behavior, leading to a seven-loop divergence in D = 4.
However, when similar symmetry arguments are applied
to N = 4 supergravity, they imply the existence of a valid
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FIG. 1: Sample graphs for the five-loop four-point N = 4
sYM amplitude. The graph labels correspond to the ones
used in the ancillary file [24].

three-loop counterterm [21]; the coefficient of this coun-
terterm has recently been explicitly shown to vanish [13].
(See ref. [22] for a string-based argument.) This exhibits
better behavior than implied by known symmetry con-
siderations and is in line with cancellations suggested by
unitarity arguments [23]. In particular, it emphasizes the
importance of directly checking the amplitudes whether
eq. (1) holds for N = 8 supergravity at L = 5.
Our construction of the five-loop four-point amplitude

of N = 4 sYM theory organizes it in the form,

A
(5)
4 = ig12stAtree

4

∑
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where the second sum runs over a set of 416 distinct
(non-isomorphic) graphs with only cubic (trivalent) ver-
tices. Some sample graphs are shown in fig. 1. The
first sum runs over all 24 permutations of external leg
labels indicated by S4. The symmetry factors Si remove
overcounts, including those arising from internal auto-
morphism symmetries with external legs fixed. Here we
absorb all contact terms (i.e. terms with fewer than the
maximum number of propagators) into graphs with only
cubic vertices, by multiplying and dividing by appropri-
ate propagators. We denote external momenta by ki for
i = 1, . . . , 4 and the five independent loop momenta by
lj for j = 5, . . . , 9. The remaining lj are linear combi-
nations of these. The color factors Ci of all graphs are
obtained by dressing every three-vertex in the graph with
a factor of f̃abc = Tr([T a, T b]T c), where the gauge group
generators T a are normalized as Tr(T aT b) = δab. The
gauge coupling is g and the crossing symmetric prefac-
tor stAtree

4 is in terms of the color-orderedD-dimensional
tree amplitude Atree

4 ≡ Atree
4 (1, 2, 3, 4) and s = (k1+k2)

2

and t = (k2 + k3)
2.

To construct the numerators Ni, we use the method of
maximal cuts [8], based on the unitarity method [25]. Ap-
plication of this method and various strategies for greatly
streamlining the construction of the numerators has been
described in considerable detail in ref. [6], so here we
give only a brief summary. The method works in D di-
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FIG. 2: Sample Nk-maximal cuts for k = 0, 1, 2, 3. The ex-
posed lines are all cut.
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FIG. 3: Examples of simple cuts used to speed up the calcu-
lation. (a) is a two particle cut, (b) a box cut and (c) is a
sample application of BCJ amplitude relations. The exposed
lines are all cut.

mensions and can be used to obtain local expressions,
from which UV divergences can be straightforwardly ex-
tracted.

We start with an ansatz for the diagram numerators
containing free parameters to be determined by matching
against generalized unitarity cuts. Our ansatz is a poly-
nomial of degree four in the kinematic invariants, subject
to the power-counting constraint that no term has more
than six powers of loop momentum. We also demand
that each numerator respects the automorphism symme-
tries of the graph. Once a solution is found satisfying
a complete set of cut conditions, we have the integrand.
If an inconsistency is encountered, the ansatz must be
enlarged. We note that the solutions for numerators are
not unique and different choices can be mapped into each
other by generalized gauge transformations [10, 11, 26].

The parameters of the ansatz are determined from gen-
eralized unitarity cuts that decompose a loop integrand
into products of on-shell tree amplitudes summed over
all intermediate states,

∑

states A
tree
(1) A

tree
(2) · · ·Atree

(m). These
cuts are organized according to the number of cut prop-
agators that are replaced with on-shell conditions. We
start from the maximal cuts (MCs) where all 16 internal
propagators cut. After obtaining the MCs, we then con-
structs all next-to-maximal cuts (NMCs), with 15 cut
propagators. We continue this process, systematically
constructing analytic expressions for (next-to)k-maximal
cuts (NkMCs) with fewer and fewer imposed cut condi-
tions. For the five-loop four-point N = 4 sYM amplitude
this process terminates at k = 3, since the power count-
ing of the theory prevents numerator factors from can-
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celing more than 3 propagators. Representative cuts for
k = 0, 1, 2, 3 are shown in fig. 2. The number of nonzero
(color-stripped) cuts of type NkMC are 410, 2473, 7917,
15156 for k = 0, 1, 2, 3, respectively. This count does
not include the different independent color orderings of
each cut. In addition to the nonvanishing cuts, there is
a large class of Nk≤3MCs that evaluate to zero because
they contain nontrivial (n ≤ 3)-point subamplitudes.
Each cut can be reduced to a relatively simple ana-

lytic expression. All NkMCs used in the construction
are evaluated in D dimensions by embedding them in
auxiliary cuts that can be directly expressed in terms of
simplified analytic forms. As discussed in some detail in
ref. [6], two particularly useful cuts for this purpose are
two-particle cuts and box cuts. Whenever a two-particle
reducible cut can be factorized into two four-point am-
plitudes, as illustrated in fig. 3(a), all contributions to
the cut can be written down immediately using lower-
loop results [2]. Similarly, all cut contributions that pos-
sess a four-point loop or box subdiagram, illustrated in
fig. 3(b), are simple to evaluate [6]. A third type of aux-
iliary cut [10], illustrated in fig. 3(c), allows us to map
known D-dimensional planar cuts to nonplanar ones via
the BCJ tree-amplitude relations [10]. Alternatively, one
can construct numerator representations that obey the
color-kinematics duality for each cut separately [6], giv-
ing local numerator relations between planar and nonpla-
nar diagrams, up to terms that vanish on the cut. This
technique is especially useful whenever the cut contains
massless bubble or tadpole subdiagrams (as sometimes
occurs for N3MCs), since the local numerators are auto-
matically free of spurious singularities that can appear
with other methods. A fourth type of auxiliary cut valid
in D dimensions and used in our construction is one that
maps five-loop nonplanar cuts to simpler six-loop planar
cuts [27].
We have found a choice of parameters in the starting

ansatz whose cuts correctly reproduce the NkMCs at the
level of the integrand. We thus have a complete integral
representation of the five-loop amplitude. As a few sim-
ple examples, the numerators of graphs 1, 12 and 284
are

N1 = s4 , N12 = 2s3k3 · l5 ,

N284 = 2s2((l10 · l20)
2 + (l13 · l18)

2) ,

corresponding to the graphs in fig. 1 labeled as (1), (12)
and (284) and matching the labeling in the ancillary
file [24]. The lines with arrows in fig. 1 give the momen-
tum labels and directions. The symmetry factors 1/Si

for these graphs are respectively 1/4, 1 and 1/4.
The complete set of 416 nonvanishing graphs with their

associated symmetry factors, numerators and color fac-
tors are included in the ancillary file [24]. We note that
graphs 61, 67, 133, 137, 263, 382, 412 have vanishing color
factors for a general gauge group (due to symmetry prop-
erties of the graph), and hence do not contribute to the
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FIG. 4: Some of the five-loop vacuum integrals that appear in
intermediate steps. Only (a), (b) and (c) appear in the final
UV divergence. Integral (j) has a nontrivial numerator factor,
as indicated. The (blue) dots indicate that a propagator is
squared.

amplitude. However, we include them in our represen-
tation because they are needed for constructing gravity
amplitudes [6].
We have carried out extensive cross checks on our re-

sult. The cut construction automatically cross checks
the vast majority of contributions because they are de-
tected in multiple independent channels. As an addi-
tional rather nontrivial check, in four dimensions we con-
firmed numerically that all the analytically-obtained cuts
are correct; to carry out this check we used the simple
algorithms of ref. [28] for carrying out the supersums ap-
pearing in the cuts. We have also carried out systematic
cross checks using generalized cuts with up to six col-
lapsed propagators. Furthermore, we have evaluated a
set of cuts that suffices to detect all “snail” contribu-
tions, equivalent to bubbles on external legs (see sections
2D and 3C of ref. [7]), showing that such contributions
do not appear in our representation.
Starting with the constructed integrand, we obtain the

potential logarithmic divergence in the five-loop critical
dimension, D = 26/5, following the same strategy as at
lower loops [6, 7, 18, 19]: We expand the amplitudes
at small external momentum and keep the leading term.
The result of this expansion is a sum of about 185 vac-
uum diagrams; a few of which are displayed in fig. 4.
As discussed in refs. [7, 19], the vacuum integrals in this
expansion are not all independent (so the precise num-
ber appearing initially can vary). We derive consistency
relations between the vacuum integrals by considering
auxiliary linearly divergent integrals of similar propaga-
tor structure, expanding them around zero external mo-
mentum and requiring that the results of the expansion
be independent of different integrand parametrizations.
This also directly cross checks the procedure for inte-
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gral reduction since we obtain a highly overconstrained
set of homogeneous consistency equations. The fact that
no positive definite integral is set to zero by this system
is a strong check on the calculation. These consistency
relations eliminate most of the vacuum diagrams. Two
examples are,

V (j) =
24

5
V (a) − 2V (d) ,

V (b) = 2V (c) + 35V (i) +
365

6
V (d) −

4175

162
V (e)

−
1045

18
V (f) −

9865

81
V (g) +

305

3
V (h) ,

where the labels correspond to the ones in fig. 4.
After using the consistency relations, the leading UV

divergence is remarkably simple and given by only three
vacuum integrals. For SU(Nc), it is

A
(5)
4

∣

∣

∣

div
= −

144

5
g12stAtree

4 N3
c

(

N2
c V

(a)

+ 12(V (a) + 2V (b) + V (c))
)

× (tf̃a1a2bf̃ ba3a4 + sf̃a2a3bf̃ ba4a1) . (3)

With the chosen normalization, the Wick rotated vacuum
integrals in eq. (3) are all positive definite, proving that
no further hidden cancellations remain at L = 5 in the
critical dimension for either leading- or subleading-color
contributions. Using FIESTA [29] we have numerically
evaluated the integrals giving,

V (a) =
0.331K

ǫ
, V (b) =

0.310K

ǫ
, V (c) =

0.291K

ǫ
,

where the dimensional regularization parameter is ǫ ≡

(26/5 − D)/2, K = 1/(4π)13 and numerical integration
uncertainties are below the displayed digits. It is inter-
esting that the ratio between the subleading and leading
contributions 45.0/N2

c is rather close to the three- and
four-loop ratios, 43.3/N2

c and 44.4/N2
c [6]. A striking

feature of the result (3) is that the divergence does not
contain terms beyond O(1/N2

c ) suppression, nor does it
contain double-trace contributions when converted to an
SU(Nc) color-trace representation, in line with expecta-
tions from lower loops [6]. The second of these features
has already been discussed in refs. [6, 30]. Furthermore,
the three integrals and their relative coefficients have a
remarkable similarity with the corresponding ones at four
loops, as seen by comparing to eq. (5.33) of ref. [6]. At
lower loops, exactly the same combination of integrals
appearing in the subleading-color contributions to the
N = 4 sYM divergences appear in the corresponding
ones of N = 8 supergravity [6]. A natural conjecture is
that the same holds at five loops, so that the two theories
share the same critical dimension, D = 26/5.
In summary, the five-loop amplitude we have con-

structed here offers detailed information on the struc-
ture of the nonplanar sector of N = 4 sYM theory. As

a first application, we have shown that simple patterns
for divergences in the dimension where they first appear
continue to hold through five loops; this hints that the di-
vergences are controlled by a deep structure of the theory.
Our construction of the five-loop four-point amplitude is
an excellent starting point to try to find a representation
exhibiting the duality between color and kinematics. We
expect that the results presented here will be crucial in-
put for obtaining corresponding supergravity amplitudes
and for studying their UV behavior.
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