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We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new
response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged
dilatonic black strings as an example and using the blackfold approach we measure their elastic and
piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of
charged dilatonic black rings in dimensions higher than six.

Introduction. The dynamics of black branes is gov-
erned by dissipative fluid mechanics in the regime of
long-wavelength perturbations. This has been shown in
the context of the AdS/CFT correspondence where the
fluid lives on the boundary [1] and for asymptotically flat
space-times using holographically inspired techniques [2–
4]. The dissipative character of these fluid flows allows
for the measurement of transport coefficients such as bulk
and shear viscosities by evaluating the boundary stress-
energy tensor in a derivative expansion. These transport
coefficients have been used to draw predictions about the
viscosity to entropy ratio of strongly coupled plasmas in
holographic setups and by extrapolation in real world
physical models [5]. In the context of asymptotically flat
space, knowledge of the viscosity coefficients is enough
to predict the onset of the Gregory-Laflamme instabil-
ity with higher accuracy for larger brane co-dimension,
indicating that the full non-linearity of Einstein’s equa-
tions is effectively reduced to the simple physical system
of viscous fluid flows [4].

The character of the perturbations that has received
the greatest deal of attention in the literature is of the
intrinsic type, in which small deformations of the black
brane geometry are applied along the space-time bound-
ary or the brane worldvolume directions. However, per-
turbations which are of extrinsic nature have been con-
sidered within the framework of the blackfold approach
[2, 3, 6], where strains are induced by bending black
brane geometries along transverse directions to the brane.
In its simplest setting, the blackfold approach is an ef-
fective theory governing the dynamics of black p-branes
with thickness r0 wrapped over a submanifoldWp+1 with
characteristic length scale R ≫ r0 in the ambient space-
time. The set of equations that describe the blackfold
effective theory, directly derivable from Einstein equa-
tions [7], is a generalization of usual fluid mechanics
in which the fluid is confined to a dynamical surface
which acts as a boundary for the near-horizon geome-
try of a black p-brane. Extrinsic perturbations can be
accounted for through a derivative expansion in the pa-
rameter ε ≡ (r0/R) which takes into consideration the
finite thickness effects of the brane geometry. In stark
contrast with viscous intrinsic corrections where the dy-
namics is time-dependent, these deformations have been

applied to stationary fluid configurations leading to the
uncovering of new response coefficients [8] of uncharged
black branes that can be interpreted as elastic moduli.
This has provided the first measurement of a general rel-
ativistic generalization of the Young modulus.
The application of the blackfold approach, which can

be considered as a generalization of the fluid/gravity cor-
respondence, has led to a broader connection between
gravitational physics and material science exhibiting the
fluid description along worldvolume or boundary direc-
tions on one side and the elastic solid description along
transverse directions of thin black brane geometries on
the other side. This linkage is still in its early stages of
development and the purpose of this letter is to search
for more general connections between gravity and long-
wavelength physics, and in particular probe the rich land-
scape of possible response coefficients of black branes.
In this context we present and unravel the electroelastic
behavior of charged black strings in Einstein-Maxwell-
Dilaton (EMD) theories by explicitly measuring their
piezoelectric moduli - a relativistic notion of the response
coefficients encountered in real world piezoelectrics - and
hence draw a novel parallel between gravitational physics
and electroelasticity theory.
Equations of Motion. Hydrodynamical perturbations
of black branes are sourced by a monopolar distribu-
tion of stress-energy tensor which to leading order is of
the perfect fluid form and receives corrections order-by-
order in a boundary derivative expansion. On the other
hand, extrinsic elastic deformations are introduced by
considering finite thickness corrections to the brane ge-
ometry which are captured by a multipolar expansion of
the stress-energy tensor. This is done by correcting the
stress-energy tensor in a Dirac-delta function series:

T̂ µν(xλ) =

∫

Wp+1

dV

[

T µν

(0)(σ
a)

√−g
δ(D)(xλ −Xλ(σa))

−∇ρ

(

T µνρ

(1) (σa)
√−g

δ(D)(xλ −Xλ(σa))

)

+ ...

]

,

(1)

where dV = dp+1σ
√−γ . Our conventions are as follows:

µ, ν are space-time indices, a, b are p-brane worldvolume
indices and Xµ(σa) denotes the brane embedding func-
tions. Furthermore, gµν is the background metric and
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γab = gµνu
µ
au

ν
b with uµ

a ≡ ∂aX
µ is the induced metric

on the brane worldvolume. The Dirac-delta function has
the role of localizing the source in the space-time region
xµ = Xµ(σa) when dipolar terms are absent, otherwise
these introduce an ambiguity in the position of the world-
volume surface within a finite size region of thickness r0.
This is parametrized by ‘extra symmetry 2’ [9] which
transforms T µν

(0) and T µνρ

(1) under a O(ε) displacement of

the worldvolume location Xρ(σa) → Xρ(σa) + ǫρ(σa).

In Eq. (1) the tensor T µν

(0)(σ
a) represents the monopolar

structure of the (p + 1)-dimensional source and receives
dissipative corrections when hydrodynamic fluctuations
are considered, while the extra structure T µνρ

(1) (σa) en-

codes the dipolar character of the distribution of stress-
energy. Assuming the brane not to backreact onto the
background space-time, the equations of motion in the
absence of external forces follow from stress-energy con-
servation

∇ν T̂
µν = 0 . (2)

This gives rise to a worldvolume effective theory that
describes the dynamics of fluid configurations living on
dynamical surfaces [3, 8]. Eq. (2) is valid also for charged
(dilatonic) branes as long as no couplings to external
background fields are present [10–12].

Finite size dipole corrections to the stress-energy ten-
sor are well known to capture intrinsic spin when con-
sidering the motion of spinning point particles, while as
shown in [8], they can also effectively describe world-
volume stress-energy dipoles induced by the bending of
black branes. More precisely, using the orthogonal pro-
jector ⊥µ

ν = δµν − uµ
au

a
ν, the 3-index tensor structure

T µνρ

(1) can be decomposed as follows

T µνρ

(1) = u
(µ
b jν)ρb + uµ

au
ν
bd

abρ + uρ
aT

µνa

(1) . (3)

Here jνρb ≡ ⊥ν
µ⊥ρ

λu
b
σT

µλσ

(1) , satisfying jνρb =

j[νρ]b, encodes the intrinsic angular momenta, dabρ ≡
ua
µu

b
ν⊥ρ

λT
µνλ

(1) , with property dabρ = d(ab)ρ, describes the

dipole sources of worldvolume stress-energy and the com-
ponents T µνa

(1) are pure gauge and can be set to zero using

the general covariance of (1).

Electrically charged fluid configurations have also been
considered in the fluid/gravity correspondence when
dealing with hydrodynamic fluctuations, allowing for the
computation of conductivities [13, 14]. Besides being de-
scribed by a stress-energy tensor, these are character-
ized by an additional monopole source of electric current.
Here we are interested in black branes that are electrically
charged under a 2-form field strength Fµν(xα) which de-
velop worldvolume electric dipoles due to the action of
bending. In direct analogy with classical electrodynamics
we expand the electric current in a Dirac-delta function

series:

Ĵµ(xλ) =

∫

Wp+1

dV

[

Jµ

(0)(σ
a)

√−g
δ(D)(xλ −Xλ(σa))

−∇ρ

(

Jµρ

(1)(σ
a)

√−g
δ(D)(xλ −Xλ(σa))

)

+ ...

]

.

(4)

In parallel with (1), this displays general covariance
via ‘extra symmetry 1’, δ1J

µρ = −ǫµauρ
a and δ1J

µ =
−∇aǫ

µa, and has the same ambiguity as the stress-energy
tensor under small displacements of the embedding sur-
face expressed by ‘extra symmetry 2’:

δ2J
µ

(0) = −Jµ

(0)u
a
ρ∇aǫ

ρ − Jλ
(0)Γ

µ
ρλǫ

ρ ,

δ2J
µρ

(1) = −Jµ

(0)ǫ
ρ .

(5)

In the probe approximation, Eq. (2) is now supplemented
with current conservation:

∇µĴ
µ = 0 . (6)

Following the same method as in [9], we can solve Eq. (6)
decomposing the monopole part of the current as

Jµ

(0) = uµ
aJ

a
(0) + Jµ

⊥
, Jµ

⊥
= ⊥µ

λJ
λ
(0) , (7)

and the 2-index structure Jµρ

(1) as

Jµρ

(1) = m[µρ] + uµ
ap

aρ + Jµa

(1)u
ρ
a , (8)

where we have used ‘extra symmetry 1’ to gauge away
some of the components. Here m[µρ] = ⊥[µ

ν⊥ρ]
λJ

νλ
(1) is

an additional contribution to the electric current due to
the motion in transverse directions, paρ = ua

µ⊥ρ
νJ

µν

(1) is

the electric dipole moment while the components Jµa

(1) are

pure gauge and can be set to zero. The extra components
of the monopole part of the current are not independent
and can be related to the dipolar part by the relation

Jµ
⊥
= ⊥µ

λ∇a

(

2J
(λa)
(1) − J

(ab)
(1) uλ

b

)

. Consequently, current

conservation (6) results in the worldvolume conservation
equation

∇a

(

J a + pbρ∇bu
a
ρ

)

= 0 , (9)

where we have defined the worldvolume tensor J a =
Ja
(0) −∇bJ

(ab)
(1) . In the case of worldvolumes with bound-

aries Eq. (6) must be supplement by additional boundary
conditions [15]. When applied to the special case p = 0,
these equations reduce to those derived for the charged
spinning point particle [16, 17], though the complete de-
composition (8), crucial for the physical interpretation
that follows, has not been considered in the literature.
Electroelasticity of Black Branes. The dipole mo-
ment of worldvolume stress-energy dabρ is not a pri-
ori constrained. Under the expectation that bent black
branes will behave like elastic solids we assume the fol-
lowing relation between the dipole moment and the strain
in transverse directions Kcd

ρ ≡ ∇cu
ρ
d as argued in [8]:

dabρ = Ỹ abcdKcd
ρ , (10)
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where Ỹ abcd are the elastic moduli that characterize the
brane response to the bending. The assumption (10) has
a direct analogy with Hookean classical elasticity theory.
In the following we make a further assumption, namely
that a bent charged brane will behave like a piezoelectric
material in the manner dictated by linear electroelasticity
theory:

paρ = κ̃abcKbc
ρ , (11)

where κ̃abc are the piezoelectric moduli that capture the
response of the bent charged material due to electroelas-
tic deformations. In the case of a point particle Eq. (11)
should be interpreted as the effect of polarization due to
acceleration. To further motivate this interpretation we
consider the equations of motion for a spinless charged
string bent over a circle of radius R in Minkowski space-
time:

DaT
ab = 0, T abKab

ρ = 0, DaJ
a = 0 , (12)

where T ab = T ab
(0) + τab(1) and Ja = Ja

(0) + Υa
(1) are the ef-

fective worldvolume stress-energy tensor and current re-
spectively. The linear electroelastic corrections are

τab(1) = Ỹ abcdKcd
ρKρ , Υa

(1) = κ̃abcKbc
ρKρ , (13)

which arise along the direction set by the mean extrinsic
curvature Kρ ≡ γabKab

ρ. Below, we provide explicit
examples of charged dilatonic branes that satisfy these
requirements.
Measurement of Piezoelectric Moduli. In order to
measure the piezoelectric moduli from a gravitational so-
lution we consider asymptotically flat charged dilatonic
black branes in EMD theory with action

S =
1

16πG

∫

dDx
√
−g

[

R− 2(∂φ)2 − e−2aφ

4
F 2

]

. (14)

Ref. [8] measured the elastic moduli of uncharged black
branes by extracting the coefficients dabρ from the stress-
energy tensor measured far away from the brane horizon
where the weak field approximation is valid and using
Eq. (10). Similarly, we extract the coefficients paρ by
determining how the gauge field Aµ falls off at infinity
and obtain κ̃abc using Eq. (11). In general, the current
Ĵµ and the gauge field are related through the equation
of motion

∇ν

(

e−2aφFµν
)

= 16πGĴµ , (15)

which in Lorenz gauge, ∇µAµ = 0, and for asymptoti-
cally flat space-times gives rise to the linearized equation

e−2aφ0∂ν∂νA
µ = −16πGĴµ , (16)

where φ0 is the value of the dilaton far away from the
brane horizon. The dipole term paρ can then be obtained
by introducing the expansion (4) into Eq. (16).

Charged dilatonic black strings. We now focus on a large
class of asymptotically flat charged dilatonic black strings
carrying 0-brane charge which can be obtained by per-
forming an uplift of the neutral black string solution in
D = n + 4 dimensions, followed by a boost with rapid-
ity α and a Kaluza-Klein (KK) reduction along a Killing
direction. The resulting metric is given by [11]

ds2 = − f

hA
dt2 + hB

(

dr2

f
+ r2dΩ2

(n+1) + dz2
)

, (17)

with f(r) = 1 − rn0
rn

and h(r) = 1 +
rn0
rn

sinh2 α, and the
gauge and dilaton fields read

At(r) = −
√
N

rn0
rnh(r)

sinhα coshα , (18)

φ(r) = −1

4
Na log h(r) . (19)

This solution generating technique leaves the horizon reg-
ular and yields a specific value for the dilaton coupling

a2 = 2(n+3)
n+2 as well as parameters A = n+1

n+2 , B = 1
n+2

and N = A+B = 1. After KK reduction, the rapidity α
gains the interpretation of a charge parameter. The bent
version of (17)-(19) can be obtained in a similar fashion
using its neutral counterpart [6] as a seed solution. Since
we only need to know how the dipole corrections to the
fields gµν , Aµ, φ behave at infinity we focus on the large
r-asymptotics. For use below we recall the decomposi-
tion of the metric components of the neutral bent black
string given in [8],

gµν = ηµν + h(M)
µν + h(D)

µν +O
(

r−n−2
)

, (20)

where h
(M)
µν and h

(D)
µν denote the monopole and dipole

contributions respectively. The dipole contribution is

parametrized as h
(D)
µν = f

(D)
µν ε rn+1

0

(

cos θ
rn+1

)

, with coeffi-

cients f
(D)
µν obtained from [6],

f
(D)
tt = (n+ 1)k̃ − n(n+ 2)ξ(n) , (21)

f
(D)
tz = −

√
n+ 1 k̃ , f (D)

zz = k̃ + 2nξ(n) , (22)

f (D)
rr = f

(D)
ΩΩ = k̃ − (n+ 4)ξ(n) . (23)

where k̃ is the residual gauge freedom associated with the
’extra symmetry 2’ and

ξ(n) = −2−
n+4
n

n+ 1

Γ(2n+1
n

)Γ(−n+2
n

)

Γ(−n+1
n

)Γ(n+2
2n )

. (24)

Turning to the charged case, we adopt a similar decom-
position for the gauge field

Aµ = A(M)
µ +A(D)

µ +O
(

r−n−2
)

. (25)

Defining the asymptotic coefficients a
(D)
µ of the gauge

field by A
(D)
µ = a

(D)
µ ε rn+1

0

(

cos θ
rn+1

)

, one then finds after
KK reduction,

a
(D)
t = − sinhαk coshαk f

(D)
tt

a(D)
z = − sinhαk f

(D)
tz ,

(26)
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where n sinh2 α = (n+1) sinh2 αk. Using this on the left
hand side of Eq. (16) together with the expansion (4) and
the fact that φ0 = 0 yields

∇2
⊥A

(D)
ν = 16πGpν

r⊥∂r⊥δ
(n+2)(r) , (27)

where the Laplacian operator is taken along transverse
directions to the worldvolume and r⊥ = r cos θ. For the
given configuration at hand one finds the electric dipole
moment

pa
r⊥ = −

Ω(n+1)r
n+2
0

16πGR
a(D)
a , a = t, z . (28)

The dipole moment of stress-energy tensor dabρ can also
be obtained using the expansion (1) and the linearized
equation

∇2
⊥h̄

(D)
µν = 16πGd r⊥

µν ∂r⊥δ
(n+2)(r) , (29)

where the dipole perturbation h̄
(D)
µν of the bent charged

black string is defined in analogy with (20). This leads
to the components

d r⊥
tt = −

Ω(n+1)r
n+2
0

16πGR

(

cosh2 αkf
(D)
tt + f

(D)
ΩΩ

)

, (30)

d r⊥
tz = −

Ω(n+1)r
n+2
0

16πGR

(

coshαkf
(D)
tz

)

, (31)

d r⊥
zz = −

Ω(n+1)r
n+2
0

16πGR

(

f (D)
zz − f

(D)
ΩΩ

)

, (32)

expressed in terms of the asymptotic coefficients (21) of
the neutral bent black string solution.
Response coefficients and corrections to black rings. The
leading order effective worldvolume stress-energy tensor
is of the perfect fluid form [10, 11],

T ab
(0) =

Ω(n+1)

16πG
rn0
(

n(1 +N sinh2 α)uaub − ηab
)

, (33)

where ua is the local boost on the string. Using this
in the second equation of (12) one finds the leading
order critical boost ua = [coshβ(0),− sinhβ(0)] with

sinh2 β(0) = (n cosh2 α)−1. To lowest order in ε the
electric current takes the form Ja

(0) = Qua with Q =
Ω(n+1)

16πG n
√
N rn0 sinhα coshα being the charge density to

the same order.
The piezoelectric moduli are then obtained from

Eqs. (11) and (28) as

κ̃tzz =

(

k̃ − 2(n+ 2)

n+ 1
ξ(n)

)

r20J
t
(0) , (34)

κ̃zzz = −k̃r20J
z
(0) , (35)

expressed in terms of the critical current. Similarly, the
elastic moduli can be obtained using Eqs. (10) and (30)

Ỹ ttzz = k̃r20T
tt
(0) −

Ω(n+1)r
n+2
0

16πG
C ξ(n) , (36)

Ỹ tzzz = −k̃r20T
tz
(0) , (37)

Ỹ zzzz =
Ω(n+1)r

n+2
0

16πG
(3n+ 4) ξ(n) , (38)

expressed in terms of the critical stress-energy tensor and

C =
n2(n+ 2)

n+ 1
sinh2 α+ n2 + 3n+ 4 . (39)

The neutral case obtained in [8] is reproduced when α
is taken to zero. Using Eqs. (12) we can compute the
correction to the critical boost of a thin charged dilatonic
black ring by bending the charged dilatonic black string
described by the response coefficients (34)- (35) and (36)-
(38). This yields:

sinh2β = (n cosh2 α)−1
(

1 + ε2(3n+ 4)ξ(n)
)

, (40)

and constitute a prediction for n > 2 where the probe
approximation is valid.
Discussion. We have shown the existence of a new re-
sponse coefficient of black branes making a solid con-
nection between the physics of piezoelectrics and grav-
ity. This new effect can be intuitively understood if one
imagines slightly curving a charged black string of fi-
nite thickness inducing a higher concentration of charged
black material in the inner surface and a depletion in the
outer surface. A varying concentration of matter due to
the compression and stretching of the material on oppo-
site sides induces a bending moment of dipolar character
as in classical Hookean elasticity theory and, since the
matter is charged, it also induces an electric dipole mo-
ment that describes the response of the charged string
to the mechanical stress. Electric fields induced by me-
chanical stresses are the basic feature of piezoelectrics
and their behavior is governed by the physics of electroe-
lastic materials. As an explicit example, we measured
the elastic and piezoelectric moduli for charged dilatonic
black strings. The same procedure can be applied to
the p-branes of [7] charged under higher form fields and
will be presented elsewhere [15]. It would be interesting
to explore the physical interpretation of these response
coefficients in the context of AdS/CFT, which would re-
quire obtaining the bent metric of a D3-brane. We ex-
pect further finite thickness effects due to the coupling
to the 5-form flux, namely, an extra contribution to the
dipole electric (magnetic) moment would appear which
would allow us to measure electric (magnetic) suscepti-
bilities. Examining the effect of Chern-Simons terms on
the response coefficients computed here would also be
interesting, in part due to the relation of these terms to
the anomaly [13, 14, 18] via the gauge/gravity correspon-
dence. A more formal development of the electroelastic-
ity of black branes could be achieved by obtaining the
metric of a bent black string to second order in epsilon
and we will leave that for future work. In that context,
it will be interesting to investigate whether relations of
the type in Eqs. (10)-(11), and generalizations thereof,
can be proven using general covariance and the laws of
thermodynamics.
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