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We demonstrate that a neuronal system, underpinned by “fire-then-reset” dynamics, can display
an enhanced resolution R ∼ T−1

ob
where Tob is the observation time of the measurement; this occurs

when the interspike intervals are negatively correlated and Tob < ∆/ε where ε is a parameter
characterizing the level of correlation between inter-spike intervals and ∆ is the average interspike
interval. We also show that by introducing negative correlations into the time domain response of a
nonlinear dynamical sensor it is possible to replicate this enhanced scaling of the resolution. Thus,
we demonstrate the potential for designing a novel class of biomimetic sensors that afford improved
signal resolution by functionally utilizing negative correlations.

It is well known that the resolution (defined as the
smallest resolvable value of a measured quantity) of a
sensor is constrained by the measurement noise. The
commonest strategy for improving the resolution is to
repeat the measurement N times and calculate the pop-
ulation mean (i.e. average) or, similarly, N measure-
ments can be done simultaneously in parallel and aver-
aged. When the measurements are statistically indepen-
dent the uncertainty (i.e. standard deviation) of the pop-
ulation mean scales as 1/

√
N , or, equivalently, as T−0.5

ob

where Tob = Nδt is the total observation time of the
measurements and δt is the sampling period. However,
it has been noted that if negative correlations between
the individual measurements exist, then the uncertainty
can be reduced as 1/Nα where α > 0.5 [1]. This suggests
that, potentially, the resolution of a measurement can be
improved by the introduction of negative correlation.

Negatively correlated interspike intervals (ISIs) are
well documented in the neuroscience literature [2–4] and
a number of models have been propounded to explain
the origin of these correlations [5–7]. Additionally, stud-
ies have pointed to the functional benefit of these cor-
relations; in particular, they have been shown to yield
enhanced detectibility of stimuli [4] and, also, increased
information transmission [5–7]. However a quantitative
link between the resolution of a “neural” measurement
and the degree of negative correlation has not previously
been established. Additionally, the possibility of reverse
engineering these newly identified neural coding mecha-
nisms and exploiting them in a new class of “biomimetic
sensors” has also not been addressed.

The aim of this Letter is threefold; first, we extend a
recently introduced neural model of negatively correlated
ISIs [7] to take into account phase diffusion - this exten-
sion is necessary to obtain physically meaningful results
(relevant to real-world applications): phase diffusion oc-
curs in all oscillating systems and, ultimately, governs
the accuracy of any clock. This extension, also, enables
us to describe systems with different degrees of negative

correlation. Second, we obtain a relationship between
the degree of negative correlation and the resolution of
a measurement; the parameter regime for the enhanced
resolution (R ≈ T−1

ob ) is also established. Finally, we
show how the configuration and operation of a nonlin-
ear dynamic sensor (specifically, a single-core fluxgate
magnetometer SCFG [9]) having a temporal event-based
readout, can be adapted to mimic the dynamics of a neu-
ron with negatively correlated ISIs. The sensor in this
“biomimetic” (inspired by Nature) configuration yields
the above-mentioned performance enhancement scaling
quantified by a lower value of the resolution; further, it
will become clear that the biomimetic configuration is
applicable to other nonlinear dynamic sensors that sub-
scribe to a time-domain based readout.
To assess the role that negatively correlated ISIs have

on the resolution of a neural measurement we start with
a Perfect Integrate Fire (PIF) model with noisy thresh-
old [7],

v̇ = β + s, (1)

with s the (constant) signal to be estimated, β a con-
stant base current, and v the voltage across the nerve
membrane. The threshold θ is a uniformly distributed
random variable, θ ∈ [θa − Du, θa + Du], that is inde-
pendently defined for every inter-spike interval. Du is
the noise intensity, and θa the mean threshold, θa = 〈θ〉.
The mode of operation is as follows; when the voltage v
reaches the threshold θ, a spike is fired, a new threshold
is chosen, and the voltage is reset to a new level η = θ−Λ.
If Λ = const, as was proposed in [7], then the ISIs gener-
ated by the model (1) are strongly negatively correlated.
However, in practice, this reset mechanism cannot be

infinitely precise. Hence, we introduce a second noise
source into the model to take this additional uncertainty
into account. We assume that in the model (1) the reset
happens in the presence of noise so that Λ = θa+ξ, where
ξ is a uniformly distributed random variable, ξ ∈ [−Dd :
Dd]. We refer to this modified PIF model as the ‘Perfect
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Integrate and Fire model with Noisy Threshold and Re-
set’ or PIF-NTR for short. The reset level is, now, given
by η = θ − θa − ξ. As will become apparent, the effect
of this second noise source is to introduce phase diffusion
into the response of the neuron. The additive reset noise
allows us to bridge smoothly between the non-renewal
and renewal regimes - these regimes were described us-
ing two separate models in [7, 8]. Denoting the times
of the level crossings as t0, t1, ..., tk, the values of the
threshold at crossing as θ0, θ1, ..., θk, and the reset levels
as η0 = θ0 −Λ0, ..., ηk = θk −Λk it is straightforward to
show from (1) that the kth time interval is given by,

Tk = (tk − tk−1) =
θk − θk−1 + θa + ξk−1

β + s
. (2)

We decompose the inter-spike interval Tk into three in-
dependent random variables so that Tk = δk+∆k−δk−1,
where we introduce δk = θk/(β+s), δk−1 = θk−1/(β+s),
and ∆k = (θa + ξk−1)/(β+ s). If the reset and threshold
are noiseless, and the signal s = const, then ∆k = ∆ =
const. In this case the process is exactly periodic be-
cause the spikes precisely occur at times tk = k∆+ t0. It
can now be observed that the second noise source ξ leads
to a variation in the intervals ∆k given by ξk−1/(β + s)
and hence this term introduces a form of phase diffusion
into the dynamics. More generally we denote the average
interspike interval 〈Tk〉 = 〈∆k〉 = θa/(β + s) = ∆
The serial correlation coefficient is calculated as [8],

ρ(m) =
〈(Tk − 〈Tk〉)(Tk+m − 〈Tk+m〉)〉

σTk
σTk+m

=







1 : m = 0,
− 1

2
+ ε

2
: m = 1,

0 : m > 1,
(3)

where we introduce the parameter ε = σ2
∆/(2σ

2
δ + σ2

∆) =
D2

d/(2D
2
u + D2

d), m is the lag and the average is per-
formed over index k. For systems that display strongly
negatively correlated ISIs one typically has ε << 1 and
hence ε ∼ σ2

∆/(2σ
2
δ ) = σ2

ξ/(2σ
2
θ). This result reduces to

that obtained in [7] when ε = 0. Clearly, ε ∈ [0 : 1]
governs the degree of negative correlation; ISIs are max-
imally (negatively) correlated (i.e. ρ(1) = −0.5) when
ε = 0 and when ε = 1, ρ(1) = 0. Consequently, the
degree of negative correlation at ρ(1) is governed by the
balance between the phase diffusion resulting from the
noisy reset (that randomly varies the period) and the
threshold noise (that ’jitters’ the spikes about the aver-
age period). We note that that for non-zero reset noise,
the point process describing the spike times is trans-
formed into a diffusion process with the diffusion coef-
ficient Ddiff = σ2

∆/∆ = σ2
ξ/((β + s)2∆).

We now introduce the sum of N inter-spike intervals
∑N

k=1 Tk; this is the observation time τob,N :

τob,N = δ0 − δN +N∆+
1

β + s

N−1
∑

k=0

ξk. (4)

FIG. 1. The variance σ2
τob,N

(Eq. 6) and (inset) the correlation

coefficient (Eq. 3)) of the model (1). β = 1, s = 0, θa = 1,
Du = 0.2.

τob,N , is the observable from which the (target) signal
magnitude must be inferred. The reason for choosing this
quantity as the observable can be understood by inspec-
tion of Equation (4). The threshold noise only enters via
the jitter times δ0 and δN ; these are the jitters associated
with the first and last spikes of a sequence of spikes. In
other words, the spike timing jitter due to the threshold
noise observed during time intervals k = 1..N−1 cancels
out due to the negative correlation. This noise cancela-
tion property is expected to lead to an improvement in
the resolution. In contrast, the last term in Equation
(4) demonstrates that the error due to the noisy reset is
accumulated.
To understand the affect of these noise sources we ob-

tain the average observation time from Equation (4)

Tob = 〈τob,N 〉 = N∆ = N
θa

β + s
(5)

and the variance of the observation time as,

σ2
τob,N

= 2σ2
δ (1 + εN). (6)

The quantity στob,N governs the error with which Tob

can be measured. Figure 1 demonstrates how this er-
ror scales with the number of time intervals included in
the observation. For εN << 1 (strong negative correla-
tion) στob,N ≈

√
2σδ and hence the error is independent

of N ; consequently increasing N will rapidly reduce the
fractional error, στob,N /Tob, according to the scaling 1/N .
However, in the opposite limit, εN >> 1, στob,N scales
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as
√
N and hence the fractional error scales as 1/

√
N as

normally expected.
The above analysis has not, however, taken into ac-

count how these quantities depend on the signal, s. As
can be observed from (4), the average period of the ISI
is dependent on the value of the signal - hence the sig-
nal can be estimated by measuring the period or, more
accurately, by measuring the time to observe N periods.
Thus, we now calculate the resolution, R, based on the
measurement of Tob using the definition [10, 11],

R =

∣

∣

∣

∣

∂Tob,N

∂s

∣

∣

∣

∣

−1

στob,N . (7)

Physically, the resolution represents the signal value that
results in στob,N being equal to the difference in Tob with
and without the signal. Substituting Eqs. (5, 6) into Eq
(7) and noting that the best resolution is obtained in the
lim s → 0 yields,

lim
s→0

R =

√
2σδβ

2

θa

√
1 + εN

N
. (8)

For short observation time (i.e. N ≪ 1/ε):

lim
s→0

R =

√
2σδβ

2

θa

1

N
∼ 1

Tob

. (9)

For long observation time (N ≫ 1/ε) we have:

lim
s→0

R =

√
2εσδβ

2

θa

1√
N

∼ 1√
T ob

. (10)

The crossover between these two scalings relationships
occurs when ε ∼ 1/N , or, equivalently when Tob ∼ ∆/ε.
Consequently, these results clearly demonstrate that an
enhanced scaling of the resolution can be observed for
sufficiently short observation windows. The size of the
window over which this enhanced scaling is observed is
governed (approximately) by the ratio of the reset noise
to the threshold noise; in general the larger the reset noise
the shorter the duration of the enhanced scaling regime.
We now assess whether the enhanced resolution can be

realised in an engineered sensor, using the SCFG [9, 10]
as a test example. To operate the magnetic sensor in
a similar mode to model (1) we need to map the sen-
sor dynamics onto the PIF-NTR model. We utilise the
fact that the magnetisation of the ferromagnetic core can
be made to switch states by application of a magnetic
field B+ + B0 followed by the field B− + B0 where B0

is the unknown external magnetic field and B+ and B−

are constant ’control’ fields used to cause the switching.
We note that the fields B+ and B− have opposite po-
larities and, in practice, can be realised [9] by applying
currents to the primary coil; also, in practice, one usually
has |B0| << |B±|. The dynamics can now be forced to

approximate those of the PIF-NTR model (1) by employ-
ing the following mode of operation. Application of the
field B+ +B0 causes the total magnetic field, B, (where
B = B0 + B+ + µ0M and µ0 is the magnetic constant
and M is the magnetisation of the ferromagnetic core),
to increase at a rate governed by the magnetisation re-
laxation time τr. A threshold, θ, is now set such that
when B = θ the reset field B− + B0 is applied for a

duration τ before being switched back to B+ + B0 and
the process repeats. The fact that the reset field is ap-
plied for a fixed time duration τ is essential because the
value of the magnetisation reached during the reset pe-
riod will depend on the value of the magnetisation when
the threshold is crossed (the crossing point varies due to
noise) and, hence, memory of this magnetisation is car-
ried forward to the next cycle; this memory effect gives
rise to negative correlations. Finally, we note that due
to the nonlinearity of the magnetic hysteresis the mag-
netisation relaxation time τr will depend (nonlinearly)
on the value of B0. Consequently, B0 can be estimated
by measuring the period of oscillation T = τ + τr or, by
analogy with the neural system, the time τob to complete
N periods. It should be noted that we assume all noise
sources are intrinsic to the SCFG, these are modelled as
an effective threshold noise. An effective reset noise also
occurs because of nonlinear relaxation; unlike Eq. 1, the
reset value depends nonlinearly on the value of the mag-
netisation when the reset pulse is applied, this leads to an
effective error (noise) in the reset level [14]. We also note
that our measurement scheme requires a comparison of
the field B with the threshold θ. We envisage this being
undertaken by a device with a sigmoidal (almost binary)
dependence on B (e.g. like a phase transition device) -
such a device would then trigger a circuit (e.g. monos-
table multivibrator) to generate a pulse of duration τ .
Due to the binary response this unit cannot be used for
direct measurement of magnetic fields.
To verify these concepts we model the dynamics of

the magnetization of a ferromagnetic material with the
simplified equation [12],

τa
dM

dt
= −M +Ms tanh

(

cB

µ0

)

, (11)

where Ms is the saturation level of the magnetization, τa
is a characteristic time of the magnetization relaxation.
In Eq. (11), c is a non-linearity parameter that is pro-
portional to the Curie temperature-to-temperature ra-
tio. Analogous with [7] we introduce noise in the thresh-
old θ as an uniformly distributed variable in the interval
[θa −Du : θa +Du].
Numerical simulations of Eq. (11) show that the level

that the magnetization is reset to is strongly dependent
on τ . For large τ (see inset of Fig. 2(a) for τ = 3) the
magnetisation approaches the saturation value and this
reduces the negative correlation at ρ(1) (Fig. 2(a) for
τ = 3). ρ(1) reduces because partial saturation of the



4

0 1
0

20

40

60

Correlated intervals
Correlated intervals
Non-correlated intervals

1 10 100
0.001

0.01

0.1
Correlated intervals
Correlated intervals
Non-correlated intervals

0 5 10
-0.5

0

0.5

1

1.5

0 10 20
-1

-0.5

0

0.5

0 5 10
-0.2

0

0.2

0.4

B

Tob

R

τ  = 0.1
τ  = 0.5

T

τ  = 3.0

(a)

(b)

~1/T

~1/T

0.5
ob

ob

τ  = 0.1
τ  = 0.5
τ  = 3.0

0

ob

n

N = 12

ρ

tt

M M

τ  = 0.5τ  = 3.0

N =1/ε*

ε
-0.5

/2

FIG. 2. (a) The correlation coefficient ρ(n). Insets: the mag-
netization M as a function of time t for the model described
via (11). The time series corresponds to non-correlated inter-
vals on the left (τ = 3.0) and negative correlated intervals on
the right (τ = 0.5). (b) The resolution, R, vs. the length of
the time series, Tob. Inset: the observation time Tob as a func-
tion of the external magnetic field B0. θa = 2.5, Du = 0.05,
µ0 = 1, B− = −B+ = 2, c = 3, and B0 = 0 except inset in
(b).

magnetisation results in a loss of memory of the initial
magnetisation when the threshold is crossed (if the reset
fully saturates the core then all memory effects are re-
moved). For small τ , the level that the magnetization is
reset to strongly depends on the value of the magnetisa-
tion when the threshold was crossed (see inset of Fig. 2(a)
for τ = 0.5) and hence strong negative correlation is ob-
served (see Fig. 2(a) for τ = 0.5).
The target magnetic field B0 can be estimated from N

time intervals, Ti, i = 1, 2, ..., N as the total observation
time τob =

∑N

i=1 Ti. The resolution, R, of the magnetic
sensor is defined via (7) with the replacement στob,N =

στob =
√

〈[τob − Tob]2〉, with the mean observation time
identified as Tob = 〈τob〉, and s = B0 the target signal.
The dependence of the observation time Tob on B0 is

shown in the inset of Fig. 2(b). This monotonic depen-

dence can be used to estimate the target field. Fig. 2(b)
shows that R scales as T−0.5

ob for the non-correlated in-
tervals (e.g. for parameter value τ = 3). However, when
strong negative correlation exists (e.g. τ = 0.1) the scal-
ing is more complex. The scalings T−1

ob and T−0.5
ob are

shown as the black and red straight lines and these are
seen to asymptote to the τ = 0.1 data at small and large
observation times respectively. This provides clear evi-
dence that at short observation times the enhanced scal-
ing T−1

ob is observed; this scaling crosses over to T−0.5
ob at

large observation time. Theoretical we have shown [13]
that this dual scaling appears to be a universal property;
it occurs for linear and nonlinear reset mechanisms and
in models of sensors and neural models. Moreover, our
theory [13] predicts the number of periods N∗ at which
the scaling crosses over from T−1

ob to T−0.5
ob ; the result is

N∗ ≃ 1/ε (see Fig 2(b)) (note ε can be estimated directly
from the numerical results presented in Fig. 2(a).
We conclude that operating a nonlinear sensor in a

’biomimetic mode’ can in principle improve its perfor-
mance by exploiting negative correlation. In particular,
absent the luxury of a long observation time, this opera-
tional mode might be helpful. Finally other methods of
introducing negative correlation can be envisaged. Fur-
ther research is required to establish how to exploit this
effect for maximal advantage in sensor design.
The authors gratefully acknowledge support from the

US Office of Naval Research.

∗ a.nikitin@warwick.ac.uk
† n.g.stocks@warwick.ac.uk
‡ bulsara2spawar.navy.mil

[1] S. Durrant and J. Feng, Biol. Cyb.95 (2006) 431453.
[2] F. Farkhooi, M. F. Strube-Bloss, M. P. Nawrot Phys.

Rev. E79, 021905 (2009).
[3] M. J. Chacron, A. Longtin, M. St-Hilaire, and L. Maler,

Phys. Rev. Let. 85, 1576(2000).
[4] R. Ratnam and M. E. Nelson, The Journal of Neuro-

science 20 (2000) 6672-6683.
[5] M. J. Chacron, B. Lindner and A. Longtin, J. Comp.

Neuroscience 23, 301(2007).
[6] D. J. Mar, et. al., Proc. Natl. Acad. Sci. USA 96 (1999)

10450 (1999).
[7] M. J. Chacron, B. Lindner and A. Longtin, Phys. Rev.

Lett. 92 (2004) 080601.
[8] B. Lindner, M. J. Chacron and A. Longtin, Phys. Rev. E

72 (2005) 021911.
[9] A. Bulsara, et. al., Phys. Rev. E67, 016120 (2003).

[10] A. R. Bulsara et. al. Euro. Phys. Jour. B 69, 109 (2009).
[11] S. Baglio et. al. IEEE Trans. Instr. Meas. 60, 667 (2011).
[12] See e.g. H. E. Stanley; Introduction to Phase Transitions

and Critical Phenomena (Oxford Univ. Press, Oxford
1971).

[13] A. Nikitin, N. G. Stocks, A. Bulsara; to be published
[14] A. Nikitin, N. G. Stocks, A. Bulsara; to appear in Pro-

ceedings of ICAND2012


