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It has been shown that doped topological insulators, up to certain level of doping, still preserve
some topological signatures of the insulating phase such as axionic electromagnetic response and the
the presence of a Majorana mode in the vortices of a superconducting phase. Multiple topological
insulators such as HgTe, ScPtBi, and other ternary Heusler compounds have been identified and
generically feature the presence of a topologically trivial band between the two topological bands.
In this letter we show that the presence of such a trivial band can stabilize the topological signature
over a much wider range of doping. Specifically, we calculate the structure of vortex modes in the
superconducting phase of doped topological insulators a model that capture the features of HgTe
and the ternary Heusler compounds. We show that due to the hybridization with the trivial band,
Majorana modes are preserved over a large, extended doping range for p-doping. In addition to
presenting a viable system where much less fine-tuning is required to observe the Majorana modes,
our analysis opens a route to study other topological features of doped compounds that cannot be
modeled using the simple Bi2Se3 Dirac model.

Solid-state realizations of Majorana fermions, parti-
cles which are their own-anti-particles, are much sought
after for their promise of new fundamental phenomena
and associated quantum computing applications[1]. By
now the list of candidate systems to realize these parti-
cles has grown quite long including: non-Abelian frac-
tional quantum Hall states[2], chiral superconductors[3],
topological insulators in proximity to superconductors[4],
axion strings[5], and low-dimensional spin-orbit cou-
pled semiconductors coupled to superconductors[6, 7].
One of the most promising directions relies on the in-
terplay between topological insulators (TIs)[8] and s-
wave superconductivity[4, 9]. Two such routes are:
(i)the trapping of Majorana bound states (MBS) in
vortices found in TI/s-wave superconductor proxim-
ity heterostructures[4] (ii)vortex bound states of doped
TIs which exhibit an intrinsic s-wave superconductor
phase[9]. The second mechanism has perhaps greater
potential, as things currently stand, since it does not re-
quire the fine-tuning of TI material properties to make
the system a bulk insulator [8]. Indeed, there is already
a candidate material: Cu doped Bi2Se3 which is a super-
conductor below 3.8 K[10, 11] although the precise nature
of the superconducting state is still undetermined.

The initial proximity effect proposal of Fu and Kane
illustrates that Majorana zero-modes will be localized
where superconducting vortex lines in TI-superconductor
heterostructures intersect the topological insulator sur-
face states[4]. The bound states are confined to the vor-
tex cores but they penetrate into the nominally gapped
bulk-region below the surface. The localization length of
the bound states in the bulk naturally depends on the
size of the bulk gap and if the bulk is doped then the
bound states can tunnel away from the surface and be
destroyed[9]. While this system, in most respects, is a
trivial s-wave superconductor, it still remembers it arose
from a TI parent state as long as the doping is not too

high. The consequence of this topological signature is
that vortices will still bind MBSs at the intersection be-
tween the vortex line and the surface. As the TI becomes
more doped a vortex quantum phase transition (VQPT)
occurs at a critical chemical potential and beyond which
no Majorana modes are bound to the vortices. This
mechanism comes with its own challenges as one desires
the formation of an s-wave gap (which may or may not
be favored), and there is only a finite doping range over
which the system will exhibit this phenomenon. The lat-
ter restriction leads to the competition between a desire
to stabilize a superconducting phase (higher doping) and
preserving the MBSs (lower-doping) and thus might still
require fine-tuning of the chemical potential.

Here we find a more attractive material context for
this mechanism which removes the fine-tuning constraint
by considering materials with electronic structure simi-
lar to bulk HgTe. This requires the consideration of 6-
bands instead of the 4-band model of the Bi2Se3/Bi2Te3

family[12]. Our essential insight is that the coupling of
the Dirac structure to an additional “trivial” band(s) can
strongly affect the location of the critical chemical poten-
tial and stabilize the MBSs over a much larger range of
doping by extending the energy range in which the topo-
logical signature persists. The set of materials where our
analysis can be applied is quite large and includes bulk
HgTe, which was recently confirmed to be a TI[13], and
the ternary Heusler materials (e.g. ScPtBi) which were
recently predicted to be TIs[14]. Beyond this application
our results indicate that the presence of a topologically
trivial band can aid the persistence of topological features
(e.g. magneto-electric response) beyond the un-doped
regime. For these materials this implies the existence of
a unique metallic phase over a broad doping range that
has not been fully characterized.

In this letter we will primarily consider bulk HgTe,
a zero-gap semiconductor that exhibits a TI phase un-
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der compressive strain although our results directly ap-
ply to the ternary Heusler compounds with just a change
of parameters in the model[13, 15, 16]. The low-energy
band structure is time-reversal invariant and consists of
three doubly-degenerate bands near the Γ-point. The
bands closest to the Fermi-level nominally consist of the
J = 3/2 multiplet of a spin-orbit split p-orbital (denoted
by Γ8) which, when (un)strained is (4)2-fold degener-
ate at the Γ-point. The other relevant band nominally
consists of an s-orbital (Γ6) and forms a Dirac Hamil-
tonian with the Jz = ±1/2 states (the light hole(LH)
band) of the Γ8 multiplet[15]. The relative orientation
of the Γ6 and Γ8 bands are inverted and thus induce
a topological band structure [16]. The other doubly
degenerate band, which is made from the Jz = ±3/2
states (the heavy hole (HH) band) hybridizes with both
of the Dirac bands, but does not qualitatively affect the
topological properties[15]. The 6-band model Hamilto-
nian expanded near the Γ-point in a basis convenient for
our analysis [|Γ8, 3/2〉, |Γ6, 1/2〉, |Γ8,−1/2〉, |Γ8,−3/2〉,
|Γ6,−1/2〉, |Γ8, 1/2〉] is:

HHgTe(~k) =

(
H+(~k) Hc(~k)

H†c (~k) H−(~k)

)
, (1)

where

H+(~k) =Eν −A1k2‖ −A2k2z − Σ −λ P√
2
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
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 , (2)

H−(~k) = H∗+(−~k), k2‖ = k2x + k2y , k± = kx ± iky .

where we have introduced a model parameter λ which
we will use to tune the coupling between the HH bands
and the other bands to pass from the Dirac limit (λ = 0)
to the physical limit (λ = 1). Additionally, Σ is the
gap generated by the compressive strain, and the re-
maining parameters are determined by the material band
structure[17]. For all of the materials in which we
are interested Eν > 0 and Σ > 0. The Hamiltonian
HHgTe preserves time reversal symmetry with the opera-
tor T = −iσy ⊗ I3×3Θ where Θ is complex conjugation.
When kz = 0, HHgTe is block diagonal with two decou-
pled 3× 3 blocks which are time-reversed partners. The
energy spectra and orbital composition when λ = 0(1)
are presented in Fig. 1a(d).

To determine the existence of MBSs on superconduc-
tor vortices we will add s-wave superconductivity to
the 6-band model at the mean-field level and study the
Bougoliobov-De Gennes (BdG) spectrum when a vor-
tex line is oriented along the z-direction. Note that we
are not considering proximity induced superconductivity

but s-wave superconductivity generated due to a Fermi-
surface instability in doped topological insulators[9]. Be-
sides the BdG doubling of the Hamiltonian, one needs
to include the vortex winding in the phase of the super-
conducting order parameter. Considering the extreme
type-II superconductor limit we ignore the magnetic field
which does not qualitatively change the results [18]. In
an ordinary s-wave superconductor, the vortex core states

are gapped [19] with a “mini”-gap δ ∝ ∆2

Ef
where ∆ is the

superconducting gap and EF is the Fermi energy of the
normal metal state. Unexpectedly, it was found that in
doped topological insulators, these modes can become
gapless at a critical doping level µc leading to the afore-
mentioned VQPT [9]. Essentially, when tuned away from
such a critical point, one can think of the vortex line it-
self as a gapped 1D superconductor which can either ex-
ist in a topological (µ−c < µ < µ+

c ) or trivial (µ > µ+
c or

µ < µ−c phase where µ±c is the critical chemical poten-
tial in the conduction and valance bands respectively)
phase analogous to the Kitaev p-wave superconducting
wire[9, 20]. When the vortex is in a topological phase it
will have MBSs localized on its ends i.e. at places where
the vortex line terminates on a surface. This is exactly
the phenomenon we seek and thus our goal is to find the
region of chemical potential where the 1D vortex line is
in a gapped topological phase. Here, instead of studying
the appearance of Majorana modes on the boundary, we
study the VQPT in a torus geometry with a vortex line
along the periodic z-direction and use Lanczos exact di-
agonalization calculations find the lowest energy vortex
mode [9, 18].

For comparison we show two different results, each for
a different coupling λ = 0, 1. In the case λ = 0 (Fig.1c,
dashed line) we essentially reproduce the results of Ref.
9 as this is the Dirac limit. We see two critical points
one in the conduction band and the other in the valence
band(s); both critical points occur past the onset of bulk
doping. For λ = 1 (Fig. 1c solid line) the HH band is fully
coupled and we can see a critical point in the conduction
band that has been pushed toward the conduction band
edge while the critical point in the valence band has been
driven to a much lower energy i.e. vastly increasing the
range of valence band doping which would contain stable
MBSs.

This large effect is rather surprising, but we will now
argue that it is the natural outcome of coupling to a
trivial band. From the arguments of Ref. 9 we know
that in the weak-pairing limit (∆ << EF ) we can de-
termine the VQPT from the normal-state Hamiltonian
alone, without using the BdG formalism. In this case, for
a vortex-line oriented in the z-direction, the critical chem-
ical potential is determined solely by the Berry phases of
the normal-state Fermi-surface (FS) in the kz = 0 and
kz = π planes. For models of the type we are considering
there are no low-energy states near kz = π so we will
only consider the kz = 0 plane. It was shown that for a
single (spin degenerate) FS that the lowest vortex core-
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FIG. 1. Band structure and orbital content of the bands of HgTe (indicated by colors: blue |Γ8,±1/2〉, red |Γ6,±1/2〉, green
|Γ8,±3/2〉) for λ = 0 (a) and λ = 1 (d). Insets show zoomed out energy spectrum. Corresponding Berry-phase on the Fermi
surfaces at kz = 0 as a function of chemical potential for λ = 0 (b) and λ = 1 (e). The Berry phases are calculated by a
numerical line-integral around each independent Fermi-surface. The dashed green/solid green lines in (e) represent the two
different HH Fermi-surfaces. Inset shows zoomed out Berry phase so that the π Berry phase of the Γ6 band can be seen. (c)
Exact diagaonlization results for the lowest energy vortex core states for λ = 0, 1 dashed/solid respectively where dots indicate
critical points. This was calculated for kz = 0 for a lattice size of 180× 180 with HgTe parameters adapted from Ref. 17 and
Σ = 0.1,∆ = 0.3. (f) Valence-band µ−c as a function of λ.

state energies are proportional to En ∝ [ΦB +(2n−1)π],
where n is an integer, so the vortex-line is critical when
the Berry-phase ΦB around the FS is π. Additionally,
for a four-band Dirac Hamiltonian, there is an easy way
to determine the energies for FS’s with π Berry phase
as the k-dependent mass term vanishes exactly at that
chemical potential. That is, at this chemical potential
there is a VQPT point where a zero energy vortex mode
emerges. For our 6-band model there are some chemical
potentials where there are more than one independent FS
when doped into the valence band(s), but let us first con-
sider cases where there is only a single (spin degenerate)
FS. While the the presence of zero energy mode directly
depends on the the value of ΦB [9] even the single-FS
case does not allow us to determine ΦB = π in a simple
way because the vanishing of the mass term of the Dirac
block does not guarantee ΦB = π when the HH band is
added (λ 6= 0). To determine ΦB we need to consider
kz = 0 where Eq. 1 breaks up into two decoupled 3 × 3
blocks. Let us consider one block of the Hamiltonian in
the kxky-plane in polar coordinates (k‖, θ) in the basis of
[|mJ = 3/2〉, |mJ = 1/2〉, |mJ = −1/2〉] ,

H+(k‖, θ) =Eν −A1k
2
‖ − Σ −λP√

2
k‖e
−iθ √

3Dλk2‖e
−2iθ

−λP√
2
k‖e

iθ A0k
2
‖

P√
6
k‖e
−iθ

√
3Dλk2‖e

2iθ P√
6
k‖e

iθ Eν −B1k
2
‖ + Σ

 . (3)

Due to time reversal symmetry, the Berry phases of H−
and H+ only differ by signs so we only consider H+

and calculate the Berry phases at the FS’s. To sim-
plify the calculation, we have used the spherical approx-
imation which implies that A1 = A2, B1 = B2, and
F = 0 in Eq. 1, and that in-plane FS’s will be circu-
lar. The generic solution can be obtained by using an
ansatz which captures the θ-dependence and is of the

form: Ψ =
(
a(k‖)e

−iθ, b(k‖), c(k‖)e
iθ
)T

where the vec-
tor (a, b, c) is an eigenvector of H+(k‖, 0). Therefore, for
the case of a single in-plane FS, the Berry phase of the
wavefunction Ψ is

ΦB = −i
∫ 2π

0

〈Ψ|∂θ|Ψ〉dθ = 2π(|c|2 − |a|2). (4)

This result applies in the entire regime of n-doping, and
in several regions of p-doping where only a single HH FS
persists. The expression for ΦB is generic for our model
and the weights a, b, c depend on the particular FS, the
value of µ, and the value of λ.

Let us now illustrate how turning-on the coupling to
the the trivial HH band affects the locations of critical
FS’s i.e. places where ΦB = π. First, we consider λ = 0
so that the system is in the Dirac limit (see Fig. 1b).
If the Fermi-level is in the HH band the Berry phase
is an integer multiple of 2π (since |a|2 = 1, |c|2 = 0)
and thus does not generate a VQPT. However, if the
Fermi-level is in one of the two Dirac bands then the
Berry phase is ΦB = 2π|c|2 which will reach a value of
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π when |c|2 = |b|2 = 1/2 as found in Ref. [9]. This
will occur at one of the chemical potentials µ±c (λ = 0) =
A0(Eν+Σ)
A0+B1

±
√

P 2(Eν+Σ)
6(A0+B1) for the upper and lower bands re-

spectively as indicated by the solid dots in Fig. 1b. With
a small λ 6= 0 there will be a correction to the LH and Γ6

band wavefunctions of the form δΨ± = (δ±, 0, 0)T where
the ± indicate upper(LH)/lower (Γ6) band respectively.
The resulting wavefunctions and Berry phases at the orig-
inal critical energies are Ψ± = (δ±, ±1, 1)T /

√
2 + |δ±|2

and ΦB± = π(1− 3|δ±|2/(2 + |δ±|2)) which have clearly
been decreased independent of which band. The effect
on the respective critical potentials in each band is, how-
ever, asymmetric. We can see this by noting for λ = 0,
ΦB shifts from 2π to 0 (0 to 2π) as one raises (lowers)
the chemical potential through the LH (Γ6) band (see
Fig. 1b). Our restriction to a single-FS implies that the
critical points are determined by ΦB = π. Thus, with
respect to the original critical points we see that the per-
turbed critical points are at µ±∗c < µ±c . This means that
the viable doping range has decreased for the conduction
band, but increased for the valence band. Indeed, we
see it is exactly the coupling to the trivial band which
causes the shift in the Berry phase. If we assume axial
rotation symmetry one can easily extend this result to
trivial bands with higher angular momentum by replac-
ing |mJ = 3/2〉 with |mJ = (n+ 1/2)〉 which will lead to
ΦB = 2π(|c|2−n|a|2). For n ≥ 0, this will share the same
qualitative features as the mJ = 3/2 case; but for n < 0,
the range of the MBSs will decrease for the valence band
and increase for the conduction band. For most ranges
of p-doping, when λ 6= 0, this calculation is merely sug-
gestive since there will be more than one FS, but we will
see in the next paragraph that these arguments are still
approximately valid in most circumstances. We also note
that in Fig. 1c,f we have already seen that the critical
point can be shifted dramatically in the valence band due
to the nature of the coupling to the trivial HH band, but
one must eventually take other bands into account, be-
cause as µ−c is pushed lower and lower we will eventually
have to consider the spin-orbit split off band which we
have ignored. The qualitative trend, however, is quite
striking and is favorable for experimental realization.

Finally, to complete our analytic interpretation of the
numerics we consider the important case when two FS’s
are present simultaneously for some range of chemical
potentials. For our model there are two FS’s present in
two separate energy ranges (when λ 6= 0): (i) a chemical
potential near the top of the HH band leading to a nar-
row energy range with two HH FS’s (ii) a wide range of
chemical potentials with one FS from the HH band and
one from the Γ6 band. If momentum is approximately
conserved in the presence of the vortex i.e. if the vor-
tex profile is smooth and broad, we can treat the two
FS approximately independently. For case (i) we can see
from Fig. 1e that there are a total of two places where

ΦB = ±π one for each FS. These critical points are quite
unstable and usually couple together to annihilate. On
the other hand, for case (ii) we see from Fig. 1e that
in this energy range the HH FS will never have a point
where ΦB = π so the core states generated by this FS will
always remain gapped. So in this regime, in the decou-
pled FS limit, the VQPT will continue to be controlled by
the FS of the Γ6 band and we can continue to apply our
previous analytic arguments above. To more accurately
match our numerics we must consider the hybridization
between the vortex core modes on the two FS’s through
perturbation theory. If we let E1 (E2) be the lowest en-
ergy core state from the HH (Γ6) FS we can write down
the effective Hamiltonian

Heff =


E1 α∗ 0 −β
α E2 β 0
0 β∗ −E1 −α
−β∗ 0 −α∗ −E2

 , (5)

where α and β are the only couplings allowed by the
BdG particle-hole symmetry. For the decoupled limit
α = β = 0, the lowest core-state energy from each sin-
gle FS can be determined by the the Berry phase of
the normal-state FS in the kz = 0 plane; for case(ii)
E1 ∝ (ΦHH

B + π) > 0 and E2 ∝ (ΦΓ6

B + π), where ΦHH
B

and ΦΓ6

B are the Berry phases of the HH and Γ6 FS’s
respectively. Therefore, E2 = 0 exactly when µ = µ−c
so that ΦΓ6

B = −π. When the inter-FS couplings are on,
Heff has a pair of zero eigenvalues, i.e. a critical point,
when E1E2 = |α|2 − |β|2. The values of α, β depend on
the details of the vortex core states and are sensitive to
finite-size effects. Since E2 decreases from positive to
negative as µ gets lower then if |α| > |β| (|α| < |β|) the
critical chemical potential is modified and driven toward
(away from) the band edge. In our numerical simulations
we find the former case where the critical chemical poten-
tial is reached before a Berry phase ΦΓ6

B = −π is reached.
While this effect moves the critical point back toward the
band edge it still does not counter-act the much larger
shift due to the hybridization between the Γ6 and HH
bands as we have seen in Fig. 1c,f. We note in pass-
ing that we have also considered the effects due to bulk
inversion asymmetry and find they do not qualitatively
alter our results.

Our calculations indicate that materials with Dirac
bandstructures that hybridize with trivial bands can sup-
port vortex MBSs over much larger ranges of doping. The
hybridization with the trivial band delays the VQPT in
the valence band while accelerating it in the conduction
band. We are optimistic that these effects can be used
to find and design an ideal material to support Majorana
vortex states. More generally we showed that the trivial
band coupling extends the range of the topological signa-
ture. This merits further investigations on other features
of doped TIs which are sensitive to the band inversion of
the parent insulator state.
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