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We study the structure of Bogoliubov quasiparticles, ‘bogolons,’ the fermionic excitations of paired
superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors,
and paired quantum Hall states. The näıve construction of a stationary quasiparticle in which
the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical
current even though it does not move. However, treating the pair field self-consistently resolves this
problem: In a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for
which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a
superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states
of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a
dipolar charge distribution and consequently to a dipolar current pattern.

Introduction: Paired superfluids are among the most
ubiquitous of the many ordered phases of interacting
fermions in two and three dimensions. In condensed mat-
ter settings they include both neutral superfluids such as
3He, charged superconductors and now also paired quan-
tum Hall liquids such as the Moore-Read or Pfaffian state
that is believe to underlie the quantized Hall plateau at
filling factor ν = 5/2. In all cases paired superfluids
exhibit two distinct excitations that dominate much of
their physics: vortices and Bogoliubov quasiparticles or
‘bogolons’. The former are a generic consequence of su-
perfluidity but the latter are a particular signature of
pairing— they involve breaking apart a Cooper pair into
its fermionic constituents.

The structure of vortices is well understood: They are
the topological solitons of a complex scalar order param-
eter in the Landau-Ginzburg description of a superfluid.
In a superconductor, additional coupling to a Maxwell
gauge field results in an associated quantum of flux, while
for a quantum Hall liquid, coupling to a Chern-Simons
gauge field associates a quantized charge with each vor-
tex. The structure of bogolons is less well understood as
they are, by comparison, much more quantum mechan-
ical particles. We will address that gap by providing a
theoretical analysis of their structure for all three exam-
ples alluded to above. For superfluids and superconduc-
tors we will be able to recover the heuristic description
advanced by Kivelson and Rokhsar [1]. For paired quan-
tum Hall liquids our results are new and add to a recent
burst of interest in the properties of bogolons [2, 3], in-
cluding work by four of the present authors [4].

In the weak pairing (BCS) limit the momentum (or
Bloch) eigenstates of the bogolon exhibit the well known
dispersion relation sketched in Figure 1a, with a charac-
teristic minimum at the underlying Fermi surface. In

terms of these, one can make a localized wave-packet
state with a spatial extent large compared to the coher-
ence length, ξ, and a well defined momentum. Unlike a
wavepacket in the normal state, this bogolon wavepacket
has a group velocity which is different than the Fermi
velocity vF , and which vanishes on the Fermi surface.
It has spin 1/2, but its (average) charge is smaller than
the charge of electron e. Both quantities vanish as the
momentum of quasiparticles p approach the Fermi mo-
mentum pF . On the other hand, since the wavepacket
has a net momentum, it carries a net current [5] equal
to evF . This indicates that our construction of a local-
ized bogolon is fundamentally inadequate. The problem
becomes especially clear in the limit p = pF , where the
group velocity of the wavepacket is zero. In this case the
current density is finite inside the wavepacket and zero
outside of it. The resolution of this puzzle will lead us to
a bogolon structure that involves an algebraically falling,
dipolar, return current flow via the condensate for neu-
tral superfluids, a version of this screened on the scale
of the London length for superconductors, and a version
exhibiting a charge dipole as well as a locally dipolar
backflow for two dimensional quantum Hall fluids. Alto-
gether, bogolons are fairly complicated objects!

Bogolon wavepacket: We begin with the mean-field
BCS Hamiltonian for a neutral fully gapped paired su-
perfluid which also serves to fix notation,

HBCS =
∑

k
s=↑,↓

ξkc
†
kscks +

∑

k

[

∆kc
†
k↑c

†
−k↓ + h.c.

]

(1)

where ξk = k2

2m−µ, ∆k is the gap function and we work in
units where ~ = e/c = 1. It is a simple matter to diago-

nalize, HBCS =
∑

k,sEkγ
†
k,sγk,s, with Ek =
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FIG. 1: (a) Quasiparticle dispersion. (b) Current flow
around neutral superfluid bogolon (window size ∼ 2λ.)

by means of a Bogoliubov transformation,

γk,↑ = ukck,↑ − vkc
†
−k,↓,γk,↓ = vkc

†
k,↑ + ukc−k,↓,

|uk|2 =
1

2

(

1 +
ξk
Ek

)

,|vk|2 =
1

2

(

1− ξk
Ek

)

. (2)

The (T = 0) BCS ground state is then the state annihi-

lated by all the γks, |Ω〉 =
∏

k≥0

(

uk + vkc
†
k↑c

†
−k↓

)

|0〉.
Single-quasiparticle states with momentum k are given
by |ks〉 = γ†ks|Ω〉 and it is readily verified that their en-
ergy Ek is minimal at |k| = kF . We will work in d = 2 as
that naturally includes the case of the paired QH state,
but the results are readily generalized to d = 3.
A quasiparticle wavepacket with average momentum

~k0 = ~kF k̂0, spin s and spatial extent ∼ λ is obtained
by superposing the states |ks〉 with momenta near k0

∣

∣Ψλk0,s

〉

=

(

λ√
π

)
d

2
∫

ddk e−
1

2
λ2(k−k0)

2 |ks〉. (3)

In order that the energy uncertainty of the wavepacket be
smaller than its average energy, we need to choose λ ≫
ξ = vF

∆0
as can be deduced from the low lying dispersion

relation E(k) ≈ ∆0 + [vF k̂0·(~k−~k0)]
2

2∆0
where ∆0 ≡ |∆~k0

|
and vF = kF /m is the Fermi velocity.
Our primary concern is the structure of quasiparticle

wavepackets centered at momenta close to pF , so that
their group velocity is much smaller than vF . Clearly
the packet has vanishing group velocity at p = pF . How-
ever, a tedious but straightforward computation of the
expectation value of the quasiparticle current operator
jqpq =

∑

k,s
k
mc

†

k+q

2
s
ck−q

2
s in the state yields [6]

〈jqpq 〉Ψ = vF k̂0 e
−

λ
2
q
2

4 (4)

We are thus presented with a contradiction: a stationary

quasiparticle wavepacket is associated with a current that
has nonzero divergence—violating the continuity equa-
tion.

A first step in resolving this puzzle is to observe that
we have taken a slippery step in passing from momentum
space to real space. In real space, the wavepacket state
(3) is now inhomogeneous and hence a homogenous “pair
potential” ∆ no longer yields a self-consistent mean field
theory of the wavepacket [7]. It is possible to prove that
any state that satisfies the self-consistency conditions re-
spects the equation of continuity. Recomputing the pair
potential in the wavepacket state and then iterating the
construction of the wavepacket and the computation of
the pair potential should yield a state that does obey
current conservation [8]. In the supplementary material,
we show that the first iteration of this process produces a
change in the pair potential that already partially cancels
the quasiparticle current.
However implementing this approach requires detailed

numerical work. Instead, we construct an effective action
which correctly treats the low-energy, long-wave-length
physics in the weak coupling limit, ∆0 ≪ EF = k2F /2m.
While portions of this work may be reconstructed from
existing literature, in particular the ‘conserving approx-
imations’ [9–13] to superconducting response, to our
knowledge an explicit quantitative treatment of a bo-
golon wavepacket has not been previously presented.
Neutral superfluids: As we are interested in a
wavepacket constructed from momenta very close to the
(parent) Fermi surface, it is sufficient that we work with
the effective dynamics for this set of degrees of freedom.
Formally, we begin with a Hubbard-Stratonovich (HS)
decoupling of an attractive four-fermion interaction in
the particle-particle channel, and integrate out fermions
above a cutoff thus generating an effective action for the
HS field, ∆(r, t) = ∆0e

iθ(r,t). As we are in the broken-
symmetry phase, fluctuations of the amplitude can be
neglected. The result is an effective theory of dynamical
fermions coupled to a dynamical phase field θ(r, t) [14].
To be explicit, we consider the case of s-wave pairing,

where the most important terms in this (well known)
theory are represented by the action S =

∫

dtd2r (Lψ +
Lp + Lθ), with

Lψ =
∑

s

ψ†
s(r, t)

[

i∂t − µ− ∇2

2m

]

ψs(r, t) , (5)

Lp = −∆0e
iθ(r,t)ψ†

↑(r, t)ψ
†
↓(r, t) + h.c. , (6)

Lθ = −χ0

2
(∂tθ)

2 +
ns
2m

(∇θ)2 , (7)

where χ0 is the static compressibility (equal to the den-
sity of states at the Fermi surface), and ns is the super-
fluid density. At T = 0, ns = ρ, the total electronic den-
sity, for the Galilean invariant systems considered here.
Note that the conserved charge is no longer carried

solely by the fermions, but also by the superfluid compo-
nent via twists in the order parameter. A straightforward
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application of the Noether procedure allows us to write,
for the density and current

ρ = ρqp − χ0∂tθ, j = jqp +
ns
2m

∇θ (8)

where ρqp =
∑

s ψ
†
sψs and jqp =

∑

s
1
m Im[ψ†

s∇ψs]. From
S we then obtain the equations of motion

∂tρ
qp = −∇ · jqp + Bp (9)

χ0∂
2
t θ =

ns
2m

∇2θ + Bp (10)

where Bp ≡ 2i∆0

(

eiθψ†
↑ψ

†
↓ − e−iθψ↓ψ↑

)

is the term that

couples the quasiparticles and the superfluid. From (8),
(9) and (10), it is evident that ∂tρ + ∇ · j = 0, i.e. the
properly defined density and current obey the continuity
equation; it is equally clear that the quasiparticle density
is not independently conserved.
Let us now specialize to the treatment of a stationary

bogolon wavepacket in the approximation where we ig-
nore the quantum fluctuations of θ. This implies that the
LHS of Eqns (9) and (10) vanish so that

〈∇ · jqp〉 = 〈Bp〉 = − ns
2m

〈∇2θ〉. (11)

Thus, in the wave-packet state for which 〈jqpq 〉Ψ is given
by Eq. 4, the resulting phase texture is

〈θq〉Ψ =
i(~q · k̂0)
q2

(

2kF
ns

)

e−
λ
2
q
2

4 , (12)

which permits us to write for the total current

〈jq〉Ψ = vF

[

q2k̂0 − (~q · k̂0)~q
q2

]

e−
λ
2
q
2

4 (13)

Eq. (13) corresponds to a real space current 〈j(r)〉Ψ =

ẑ×∇ϕλ(r), where ϕλ(r) ≡ 2πvF
(k̂0×~r)·ẑ

r2

(

1− e−r
2/λ2

)

.

The flow pattern is solenoidal (clearly ∇ · 〈j〉Ψ = 0),
and decays as r−2 far from the center of the wavepacket.
Corrections to this expression at short distances are non-
universal, and are beyond the reach of the field-theory
approach. Finally, we note that at finite quasiparticle
concentration ρqp, the long-range nature of the distri-
bution of current density in a quasiparticle wave packet
leads to the conventional expression jqp = evF ρ

qp for
the quasiparticle contribution to the current density, in
agreement with the Boltzmann approach [15] applicable
in this limit.
Superconductors: We now turn to the case of a
charged superfluid which is minimally coupled to a fluc-
tuating U(1) Maxwell gauge field Aµ – i.e., the super-
conductor with dynamical electromagnetism. The effec-
tive action is obtained from that of the neutral super-
fluid by converting the derivatives to covariant deriva-
tives: ∂µ → Dµ = ∂µ − iAµ, where the dynamics
of Aµ are described by LMaxwell = 1

4FµνF
µν in which

Fµν = ∂µAν − ∂νAµ is the Maxwell field strength. From
S + SMaxwell, we find the equations of motion for the
quasiparticle and superfluid currents

ρ = ρqp − χ0(∂tθ − 2A0), j = jqp +
ns
2m

(∇θ − 2A)

∂tρ
qp = −∇ · jqp + Bp

χ0∂t(∂tθ − 2A0) =
ns
2m

∇ · (∇θ − 2A) + Bp (14)

supplemented by Maxwell’s equations

∇ ·E = 4π(ρ− ρ̄), ∇ ·B = 0,

∇×B = 4πj+ ∂tE, ∇×E = −∂tB. (15)

In (14) and (15) the quasiparticle current and density
take their gauge-invariant forms, ρqp =

∑

s ψ
†
sψs and

jqp =
∑

s
1
m Im[ψ†

sDψs], and E = −∂tA − ∇A0 and
B = ∇ × A are the electric and magnetic fields in the
quasiparticle state; in writing the Poisson equation we
have assumed the existence of a neutralizing positive
background ρ̄ = 〈∑s ψ

†
sψs〉Ω in the BCS ground state.

The first comment to be made here is that now even
extended bogolon states of definite momentum do not
carry current. This basically reflects the Meissner ef-
fect. Specifically, the uniform quasiparticle contribu-
tion to the current is exactly cancelled by a superfluid
backflow, which in unitary gauge θ = 0, corresponds to
ns

mA = 〈jqp〉 ∝ vF k̂0 [16]. The correct bogolon state
carries no current; they are neutral particles.
Still in unitary gauge, let us turn to the construction

of the wavepacket. For static wavepackets we find that
the third equation of (14) yields ns

m∇ ·A = 〈Bp〉 = 〈∇ ·
jqp〉, so that as before the total current j = jqp − ns

mA

is conserved. Using this, we rewrite the third Maxwell
equation as

[

−∇2 + λ−2
L

]

A = 4π
〈

jqp − λ2L∇(∇ · jqp)
〉

(16)

where we have defined the penetration depth via λ−2
L =

4πns

m and the expectation value is taken in the naive wave
packet state with A0 = A = 0. Using either the expec-
tation value of 〈Bp〉 computed in the superfluid case or
the form of jqp, we may solve (16) by Fourier analysis:

〈jq〉Ψ = vF

[

q2k̂0 − (~q · k̂0)~q
q2 + λ−2

L

]

e−
λ
2
q
2

4 , (17)

which coincides with (13) in the limit in which the cou-
pling to electromagnetism vanishes (when λL → ∞). It
is easy to see that the power-law asymptotics of the su-
perfluid case are replaced by exponential behavior at long
distances, j(r) ∼ e−r/λL for r ≫ λ and λL. This reflects
the fact that superconductors screen magnetic fields and
thus the current pattern is confined to within a penetra-
tion depth of the center of the bogolon [17] (Note that
the short-distance behavior of the wavepacket is qualita-
tively different depending on whether the superconductor
is Type I (or weakly Type II) in which case λL completely



4

characterizes the current distribution, or strongly Type
II, with ξ0 ≪ λ≪ λL, in which case the bogolon resem-
bles that in a neutral superfluid for r ≪ λL.)
Paired QH States: Our final example is the case of
a bogolon in a paired QH state of composite fermions
(CFs). Here, we start with fermions moving in a static

uniform background field A (where∇×A = B), and per-
form a ‘flux attachment’ by means of a statistical gauge
field a whose dynamics are governed by a Chern-Simons
(CS) term, LCS = 1

4Φ0
ǫµνρaµ∂νaρ, with Φ0 the quantum

of flux. Qualitatively, the role of the CS gauge field is
to attach two quanta of magnetic flux to each electron
to convert it into a CF, which sees zero net flux at half-
filling, i.e. we have B = 2Φ0ρ̄. In this case, we replace
∂µ → Dµ = ∂µ − i(a + A)µ, and change the currents
and densities accordingly. Although more properly we
should consider the example of spinless fermions and a
p-wave superconductor, the distinction is unimportant as
we are primarily interested in the interplay of the CS elec-
trodynamics and charge conservation, neither of which
depends essentially on the pairing symmetry. The equa-
tions of motion now follow as a result of S + SCS: the
‘matter’ equations are similar to the previous example,

ρ = ρqp − χ0[∂tθ − 2(a0 +A0)], (18)

j = jqp +
ns
2m

[∇θ − 2(a+A)], ∂tρ
qp = −∇ · jqp + Bp

χ0 ∂t [∂tθ − 2(a0 +A0)] =
ns
2m

∇ · [∇θ − 2(a+A)] + Bp,

but the Maxwell equations are replaced by the CS equa-
tions, which are pure constraints:

b ≡ ∇× a = −2Φ0 {ρqp − χ0[∂tθ − 2(a0 +A0)]} (19)

e ≡ −∂ta−∇a0 = 2Φ0ẑ×
{

jqp +
ns
2m

[∇θ − 2(a+A)]
}

.

Note that now, A is not a dynamical field, but rather
represents the background magnetic field, ∇×A

2Φ0
= ρ̄,

where ρ̄ is the mean density, 〈ρF 〉0, in the groundstate,
and, for the present, we will set the external potential
A0 = 0 [18]. Proceeding to the wave packet state, and
specializing to unitary gauge and to static configura-
tions as in the previous examples we use the identity
∇2V = ẑ×∇[∇×V]+∇[∇·V] (valid in d = 2) to write
[

−∇2 + λ−2
CS

]

(a+A) = 8χ0Φ
2
0

〈

jqp − λ2
CS
∇(∇ · jqp)

〉

where λ−2
CS

=
8χ0Φ

2

0
ns

m . The solution for the total field
a + A is similar to (17); observe that the flux is expo-
nentially screened over a distance λCS. Using χ0 ∼ m

2π
as appropriate to a 2D Fermi surface, and the QH re-
lation ρ̄ = 1/4πℓ2B for filling factor ν = 1/2 where ℓB

is the magnetic length, we find λCS ∼ 1
2ℓB (ρ̄/ns)

1/2
, so

for a Galilean invariant system at T = 0 where ns = ρ̄,
we find λCS ∼ 1

2ℓB. Thus, the characteristic size of a
bogolon wave packet is of order the magnetic length.
A striking difference from the normal superconductor
is that the second CS equation forces the existence of

an electric field, which leads to a deviation of charge
density from the background. The simplest estimate is

δρ ∼ 1
ℓ2
B

(k̂0×~r)·ẑ
r e−2r/ℓB ; while this is not the exact form,

the important point is that there is necessarily a dipo-
lar charge distribution oriented perpendicular to ~k0, with
separation ∼ ℓB, accompanying the screened dipolar cur-
rent pattern. Upon inclusion of the long-range Coulomb
interaction (ignored so far) [19] both current and charge
densities acquire power-law tails similar to those in [20].
In the QH case, the bogolon has a natural interpreta-

tion as the descendant of the CF in the paired phase. Sev-
eral authors, including one of us [21–24], have observed
that upon projection to the lowest Landau level the CF
in the compressible phase goes from being a charged par-
ticle to a neutral particle with a dipole moment propor-
tional to its speed and perpendicular to its direction of
propagation. The argument for a dipolar charge distri-
bution for the bogolon presented here – the application
of CS electrodynamics to a paired superfluid – is rather
different from projection to a reduced Hilbert space, and
the connection between the two cases is an intriguing
question that we hope to address in the future. We note
that a recent microscopic study [25] reports an excitonic
construction of the quantum Hall bogolon in the Pfaffian
state that is also consistent with an associated dipolar
charge distribution.
Concluding Remarks: In this paper, we have given a
consistent microscopic description of bogolon wave pack-
ets in three broad classes of paired fermion states: super-
fluids, superconductors, and paired composite Fermi liq-
uids with CS electrodynamics. In all cases, the quasipar-
ticle is associated with a decidedly nontrivial current flow
pattern carried in part by the condensate, and manifestly
obeys global and/or local conservation laws as appropri-
ate. Although for pedagogical simplicity we focused on
the case of stationary wave packets, this restriction is
merely a matter of convenience: suitably boosted current
configurations are associated with bogolons in motion.
Our results are valid in the limit ρqpξ2 ≪ 1 when the

concentration of quasiparticle wavepackets is small , or in
other words when the distance between quasiparticles is
much larger than their size. In the opposite limit of high
quasiparticle concentration where quasiparticles overlap,
the system can be studied using the kinetic equation ap-
proach [15]. In this formalism, the Boltzmann equation
for the distribution function of quasiparticles nk is sup-
plemented by equations of motion for the electrodynamic
fields and continuity equations expressing charge conser-
vation. The current and charge densities take the form

j = eρvs + e

∫

ddk
k

m
nk;

ρ = e

∫

ddk [u2knk + v2k(1 − n−k)], (20)

where vs = 1
2 (∇θ − 2A) is the superfluid velocity. The

situation is similar to the microscopic scenario discussed
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here: in order to describe the distribution of vs, an addi-
tional variable included in the kinetic theory (compared
to the case of the normal metal), charge conservation
must be treated as an independent equation, rather than
following directly from the equations of motion.
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[25] G. J. Sreejith, A. Wójs, and J. K. Jain, Phys. Rev. Lett.
107, 136802 (2011).


