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Coulomb coupling between proximal layers in graphene heterostructures results in efficient energy
transfer between the layers. We predict that, in the presence of correlated density inhomogeneity in
the layers, vertical energy transfer has a strong impact on lateral charge transport. In particular, for
Coulomb drag it dominates over conventional momentum drag near zero doping. The dependence
on doping and temperature, which is different for the two drag mechanisms, can be used to separate
these mechanisms in experiment. We predict distinct features such as a peak at zero doping and a
multiple sign reversal, which provide diagnostics for this new drag mechanism.

PACS numbers:

Vertical heterostructures comprised of a few graphene
layers separated by an atomically thin insulating layer
[1] afford new ways to probe the effects of electron in-
teractions at the nanoscale. Typical layer separation d
in these structures (1-2 nm) can be very small compared
to the characteristic electron lengthscales such as the de
Broglie wavelength, λ, and the screening length. This de-
fines a new strong-coupling regime, d � λ, wherein the
interlayer and intralayer interactions are almost equally
strong. Fast momentum transfer between electron sub-
systems in the two layers and strong Coulomb drag have
been predicted in this regime[2–7] with characteristic de-
pendence on doping, temperature and layer separation
distinct from that in previously studied systems[8].

Recent measurements[9, 10], while confirming theoret-
ical predictions away from charge neutrality (CN), yield
unexpected results at CN. Conventional momentum drag
(P-mechanism) vanishes at CN because the sign of P-
mechanism depends on the polarity of charge carriers[11].
However, experiment [10] shows a sharp peak in the drag
response at CN. This disparity indicates that new physics
is involved in driving drag in graphene at CN.

In this Letter, we propose a new mechanism for drag:
energy-driven drag (E-mechanism). As we will show, E-
mechanism becomes important in the adiabatic regime
where the electronic system is thermally decoupled from
the lattice. In graphene, slow electron-lattice cooling
means that thermal decoupling persists over few-micron
length scales even at room temperature[12–14]. As a re-
sult, electronic heat current is a dynamical variable, that
together with charge current, governs transport behavior.

When d � λ, the interlayer electron-electron scatter-
ing mediates efficient vertical energy transfer between
layers, which couples electron temperatures in the lay-
ers. In the adiabatic regime, coupled lateral energy flow
in the two electronic systems, via thermoelectric effect,
yields nonzero drag (see below). E-mechanism predicts
drag which has a characteristic density dependence (illus-
trated in Fig. 1(b)) featuring a positive drag resistivity
at double neutrality, ρ21 > 0. The sign, as well as the
peak structure in ρ21, agrees with experiment[10].

FIG. 1: Different mechanisms for Coulomb drag in graphene
heterostructures. E-mechanism dominates over P-mechanism
near zero doping, whereas P-mechanism dominates at higher
doping. The sign of the drag response depends on carrier
polarity (a). For potential fluctuations of equal sign in the two
layers, Eq.(1), the net drag (b) features a pair of nodal lines
(white dashed lines). Positive drag in the avoided crossing
region at zero doping is dominated by E-mechanism. The
resulting dependence is distinct from P-mechanism-only drag
(c) smeared by correlated density fluctuations, δµ1 ≈ δµ2.

E-mechanism arises due to the coupling between verti-
cal energy transfer and lateral charge and energy trans-
port via spatial density inhomogeneity which is intrin-
sic to graphene. Density inhomogeneity is known to
be particularly strong at CN in the electron-hole pud-
dle regime[15], providing the dominant disorder poten-
tial in clean samples. When a charge current is applied in
layer 1, density inhomogeneity produces spatially varying
heating/cooling [see Eq.(2)]. Strong thermal coupling be-
tween the electron systems in the two layers, mediated by
the interlayer energy transfer, leads to a temperature pat-
tern in layer 2 that tracks that in layer 1, δT2(r) ≈ δT1(r).
Further, since the disorder correlation length ξdis can
reach 100 nm in G/BN heterostructures[16, 17], exceed-
ing the layer separation by orders of magnitude, the po-
tential fluctuations are nearly identical in the two layers,

〈δµ1(r)δµ2(r′)〉 > 0 (1)

for r ≈ r′. As a result, the position-dependent ther-
mopower induced by the gradient ∇δT2(r) is correlated
with the heating/cooling pattern in layer 1, giving rise to
a nonzero ensemble-averaged drag voltage in layer 2.

Our mechanism predicts a particular sign of the energy
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FIG. 2: Feynman diagrams for P-mechanism (a) and E-
mechanism (b) for drag. Wavy lines represent interactions,
dashed line represents disorder averaging. The ladder in (b)
represents a long-wavelength charge-neutral mode.

contribution to drag. As a result, the density dependence
for the net drag (E- and P-mechanism combined) features
a split-up pattern of nodal lines with an “avoided cross-
ing” at zero doping, as illustrated in Fig. 1 (b). The
double sign change along the main diagonal n1 = n2 and
the peak at n1,2 = 0 make E-mechanism easy to distin-
guish experimentally.

As a parenthetical remark, the correlated density in-
homogeneity, Eq.(1), also affects the P-mechanism, how-
ever its effect is opposite to that of the E-mechanism. If
P-mechanism were the dominant contribution near zero
doping, the pattern of nodal lines would be such that
the drag sign was constant along the main diagonal (see
Fig.1b and c).

E-mechanism is mediated by neutral modes (particle-
hole excitations, or electron-lattice temperature imbal-
ance) which are of a long-range character, and thus can
be described by a hydrodynamic approach. The relevant
length scales for these modes are ξT and ξdis, the electron-
lattice cooling length and the inhomogeneity correlation
length, respectively. For a long-range disorder potential
and not too low temperatures, the lengthscales ξT and
ξdis are larger than the inelastic mean free path, ` = v/γ,
where γ is the electron-electron scattering rate. As a re-
sult, E-mechanism is captured by a hydrodynamic frame-
work which involves charge current j and heat current jq,
which in the ballistic transport regime are related by

jq(r) = Q(n)j, Q[n(r)] = S[n(r)]T/e, (2)

where S(n) is the entropy per carrier, n(r) is the density
profile, and e < 0 is the carrier charge. In the ballistic
regime, using the electron temperature approximation,
we find[18]

Q =
2π2k2BT

2µ

3e(µ2 + ∆2(T ))
. (3)

where ∆(T ) accounts for the Dirac point broadening due
to disorder and thermal fluctuations.

It is instructive to compare the Feynman diagrams de-
scribing different mechanisms (see Fig.2). The character-
istic momenta are fairly large for P-mechanism (∼ kF ),
making it a local contribution. In contrast, E-mechanism
includes ladder diagrams representing long-range modes
propagating over distances of order ξT � k−1F .

To illustrate the relation between energy and charge
transport, we first analyze in-plane resistivity in a sin-
gle layer. According to Eq.(2), spatial inhomogeneity
leads to heating/cooling in the presence of uniform charge
current (as in the Joule-Thomson process). The spa-
tial temperature profile can be found from −∇κ∇δT +
λδT = −∇ · jq, where κ is the thermal conductivity
and λδT is the electron-lattice cooling power. A tem-
perature gradient ∇δT drives thermopower, providing
additional dissipation and thereby increasing resistivity.
Onsager reciprocity combined with Eq.(2) gives E(r) =
−(Q[n(r)]/T )∇δT [18]. Taking an ensemble average over
small density fluctuations, δµ � kBT, µ, we find an in-
crease in the in-plane resistivity, 〈ραβ〉 = ρ0αβ + ∆ραβ ,
[α(β) = x, y], where

∆ραβ =
1

T

∑
|q|<∼1/`

〈δQ(−q)δQ(q)〉
κq2 + λ

qαqβ . (4)

Since the derivative ∂Q/∂µ peaks at µ = 0, this results
in ∆ραβ that peaks at CN. The temperature dependence
estimated below is ∆ρ ∝ T 2, reminiscent of super-linear
power laws for resistivity frequently observed at small
doping[19]. A contribution of nonthermal modes to ∆ρ
was analyzed in Ref.[20].

Generalizing this analysis to two layers coupled by ver-
tical energy transfer and accounting for correlated den-
sity fluctuations, Eq.(1), we find an ensemble-averaged
drag response E2 = ρ21j1,

ρ
(e)
21 =

1

2T κ̃

∂Q

∂µ1

∂Q

∂µ2

∑
q

〈δµ2(−q)δµ1(q)〉
1 + ˜̀2q2

. (5)

Here κ̃ = κ1 + κ2 is the net thermal conductivity of the
two layers, µ is the chemical potential, and ˜̀ is the in-
terlayer cooling length. This length is estimated below
and is shown to be of order of the inelastic mean free
path, ˜̀∼ `, much shorter than the electron-lattice cool-
ing length ξT . Because the sign of the correlator in Eq.(5)
is positive, energy-driven drag has the same sign as ∆ραβ
in Eq.(4), i.e. is positive at zero doping. This results in
a double sign change along the main diagonal n1 = n2,
as pictured in Fig. 1 (b). The density dependence for

ρ
(e)
21 features a peak at zero doping (see Fig.3) which is a

hallmark of the E-mechanism regime.
Positive correlation, Eq.(1), is expected for disorder

potential dominated by charge impurities [21–23]. For
the correlator 〈δµ1δµ2〉 of a negative sign, conjectured for
strain-induced charge puddles[24], our analysis predicts
a negative drag at zero doping. Hence drag is a useful
tool for probing the origin of inhomogeneity in graphene.

We begin by studying the energy transfer between the
electronic systems in the two layers (Fig.1(a)). This is
described by the Hamiltonian

H =
∑
i

∫
d2rψ†i (r)

[
−ih̄vσ·∇+δµi(r)

]
ψi(r)+Hel−el (6)
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where i, j = 1...2N index layer, and spin/valley de-
grees of freedom, δµ(r) describes the slowly vary-
ing disorder potential, v is the Fermi velocity. The
electron-electron interactions are described by Hel−el =
1
2

∑
q,k,k′,i,j Vij(q)ψ†k+q,iψ

†
k′−q,jψk′,jψk,i.

In our analysis, we ignore the correction due to fi-
nite layer separation d, approximating the interlayer in-
teraction by the bare Coulomb interaction, Vij(q) ≈
V 0
q = 2πe2/ε|q| with ε the background dielectric con-

stant. This approximation is valid when the lengthscale
d is small compared to the screening length and Fermi
wavelength in the layers, which is the case for systems of
interest[1]. The random-phase approximation then yields
a screened interaction Vij(q) = V 0

q /[1 − V 0
q (Π1(q, ω) +

Π2(q, ω))] for i, j in different layers.
We describe the energy distribution of carriers in each

layer by a Fermi distribution at temperatures T1,2. Using
Fermi’s golden rule we can calculate the rate of energy
exchange between the two layers (see Appendix). In the
degenerate limit µ1, µ2 � kBT , we obtain the energy
transfer rate between layers 1 and 2:

J12 =
6ζ(4)

h̄3v2
ν1ν2k

4
B

(ν1 + ν2)2

(
T 4
1 ln

T0
T1
− T 4

2 ln
T0
T2

)
(7)

where ν(µ) is the total density of states in each layer, and
kBT0 = v(2πe2/ε)(ν1 + ν2). Notably, for equal densities
J12 does not depend on the Fermi surface size. For equal
densities and small temperature differences between the
layers T1 ≈ T2, we obtain the cooling rate

γ =
1

Cel

dJ12
dT

=
9ζ(4)k2BT

2

πµh̄
ln
T0
T

(8)

where the heat capacity Cel = π2/3k2BTν(µ) and the den-
sity of states ν(µ) = 2µ/(πh̄2v2) for the degenerate limit
have been used. The rate γ increases as µ goes towards
neutrality, but is already quite large for µ away from
neutrality. This is completely analogous to intralayer
scattering [25, 26]. For typical values µ = 100 meV,
T = 300 K, the rate γ is about 30 ps−1, orders of magni-
tude faster than the electron-lattice cooling rates[12–14].

Vertical energy transfer couples heat transport in the
two layers, so that the layer temperatures T1, T2 obey

−∇κ1∇δT1 + a(δT1 − δT2) + λδT1 = −∇ · jq,1
−∇κ2∇δT2 + a(δT2 − δT1) + λδT2 = 0 (9)

where a = dJ12/dT [see Eq.(7)] and λ describes electron-
lattice cooling. We consider only a response linear in the
applied current, j, neglecting the quadratic joule heating
term. Inverting the coupled linear equations, we find an
increase in temperature in layer 2, δT2(r), that is driven
by current in layer 1 as

δT2(r) = − a

L̂1L̂2 − a2
(j1 · ∇)Q[n1(r), T ], (10)

FIG. 3: (a) Total drag resistivity ρ
(tot)
21 = ρ

(m)
21 +ρ

(e)
21 vs. chem-

ical potentials in the two layers, evaluated from Eq.(11) and
Eq.(5) at T = 100 K, producing a peak at µ1,2 = 0 (see text
for parameter values used). (b,c) Slices µ1 = µ2 and µ1 = −µ2

at different temperatures. Note a three-peak structure in slice
(b) and two sign changes close to CN in (c). (d) Temperature
dependence of the peak at µ1,2 = 0 in the diffusive regime.

where jq,1 is the heat current, Eq.(2), where L̂i =
−∇κi∇ + a + λ. In what follows we suppress the
λ term since electron-lattice cooling is slow. Eq.(10)
then predicts a value for the interlayer cooling length
˜̀ =

√
κ1κ2/[(κ1 + κ2)a], which yields a value close to

that for the mean free path `. The induced temperature
profile, δT2(r), creates thermal gradients that can drive
a local thermopower via E2(r) = −(Q[n2(r)]/T )∇δT2.

Spatial fluctuations in thermopower are governed by
density fluctuations via Eq.(10). In particular, close
to neutrality the local thermopower will exhibit regions
of both positive and negative sign, leading to a spa-
tial pattern of the drag resistivity. As discussed above,
the correlations between δµ1 and δµ2, Eq.(1), lead to a
nonzero ensemble-averaged drag resistivity. In the limit
δµ1,2 � kBT, µ1,2 we write Qi(r) = 〈Qi(r)〉+ ∂Q

∂µi
δµi(r).

Passing to Fourier harmonics via 〈δµ1(r)δµ2(r′)〉 =∑
q e

iq(r−r′)〈δµ1(−q)δµ2(q)〉, we obtain Eq.(5).

The fact that fluctuating local thermopower, exhibit-
ing both positive and negative signs, does not average to
zero is surprising. This happens because the inhomogene-
ity in heat current and thermopower arise from the same
source: electron-hole puddles. E-mechanism resembles
mutual drag described by Laikhtman and Solomon [27]
in semiconducting heterostructures where doping at con-
tacts produced a similar correlation between Peltier heat-
ing/cooling and thermopower. E-mechanism in graphene
differs from Ref.[27] in that density inhomogeneity is in-
trinsic, occurs throughout the sample (not just at the
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contacts), and on a far smaller scale.
To see how E-mechanism, Eq.(5), affects the total ex-

perimentally measured drag we need to account for P-
mechanism contribution. We use a model that captures
the main qualitative features of momentum drag:

ρ
(m)
21 = ρ̃

(m)
21

h

e2
(kBT )2µ1µ2

(µ2
1 + ηk2BT

2)(µ2
2 + ηk2BT

2)
, (11)

ρ̃
(m)
21 = −1.4α2/(2πη2), where ηk2BT

2 describes thermal
broadening of the Dirac point. This expression, with the
effective interaction strength α = 0.05, and η = 6.25, was
obtained by fitting the functional dependence derived in
Ref. [7] in the doping region −10 < µ/kBT < 10.

Combining this with ρ
(e)
21 in Eq.(5), we obtain the total

drag ρ
(tot)
21 = ρ

(m)
21 + ρ

(e)
21 plotted in Fig.3. Here we have

used an estimate for thermal conductivity [28]

κ = b(µ2 + ∆2(T ))/h̄T, ∆2(T ) = ∆2
0 + η(kBT )2, (12)

and assumed Gaussian correlations with average square
density fluctuations 〈δµ2〉 ≈ 25 meV2 and ξdis = 100 nm
[16, 17]. Here ∆(T ) accounts for Dirac point broaden-
ing by disorder and thermal fluctuations [18], and b is a
constant of order unity; its exact value does not impact
the qualitative features seen in Fig. 3. We note that the
details of the functional form of the correlator in Eq.(1)
do not impact the qualitative behavior. The obtained
values of total drag are compatible with measured drag
resistivities reported in Refs.[9, 10].

The density dependence of total drag plotted in Fig.3
(a) can be used to distinguish the two drag mechanisms
in experiments. Namely, the peak at zero doping is due
to E-mechanism On the slice µ1 = −µ2 (black dashed
line) this peak is surrounded by two peaks dominated
by the momentum contribution [Fig.3(b)]. On the slice
µ1 = µ2 (yellow dashed line) the two mechanisms pro-
duce contributions of opposite sign, resulting in a double
sign change [Fig.3(c)]. This provides a clear means of
discerning the E-mechanism regime.

The temperature dependence can be estimated as fol-
lows. At not too low T such that ˜̀, ` <∼ ξdis, the sum in
Eq.(5) yields

∑
q〈δµ1(−q)δµ2(q)〉 = 〈δµ1(r)δµ2(r′)〉r=r′ .

Using Eq.(3) and κ from Eq.(12), we find a non-
monotonic T dependence

ρ
(e)
21 ∝

T 4(
∆2

0 + η(kBT )2
)3 〈δµ1(r)δµ2(r′)〉r=r′ , (13)

This dependence is reminiscent of that reported in
Ref.[10] for drag resistance at CN. A similar non-
monotonic T dependence arises for in-plane resistivity
∆ραβ . At very low T such that `, ˜̀ >∼ ξdis, the sum in
Eq.(5) is cut at 1/`, giving ρ21 ∝ T 8.

The above analysis can be easily extended to describe
the diffusive limit where the elastic mean free path is

shorter than the inelastic mean free path, `′ < `. Our hy-
drodynamic approach remains valid in this regime, with
the quantity Q = sT where s is the Seebeck coefficient.
E-mechanismis still given by Eq.(5), with s and κ de-
scribed by the Mott and Wiedemann-Franz relations:

s =
π2

3e
k2BT

∂lnσ

∂µ
, e2κ =

π2

3
k2BTσ, (14)

where σ is the electrical conductivity. Taking σ to vary
linearly with carrier density, we find Q that takes on the
same qualitative form as Eq.(3) in the clean limit. As a

result, the qualitative features of ρ
(e)
21 are similar to those

found in the clean limit: namely, the avoided crossing
of nodal lines, a peak at zero doping, double sign rever-
sal along the diagonal n1 = n2 and a three-peak struc-
ture along the diagonal n1 = −n2 (Fig.3(a,b,c)). The

T dependence of ρ
(e)
21 (plotted in Fig. 3(d)) is qualita-

tively similar to the non-monotonic dependence found
in the ballistic regime, Eq.(13). However, since the
Wiedemann-Franz relation gives κ ∝ T (in contrast to
κ ∝ 1/T in the ballistic regime), at neutrality we find

ρ
(e)
21 ∝ T 2 at lowest T and ρ

(e)
21 ∝ T−4 at higher T � ∆,

as shown in Fig.3(d). Here, we accounted for Dirac point
smearing in the same way as in Eqs.(3),(12),(13).

We note that the effects of energy transport, while
being completely generic, are particularly strong in
graphene. Since P-mechanism vanishes at CN, whereas
E-mechanism produces a sharp peak in this region, the
latter can be easily discerned even at weak inhomogene-
ity. The peak structure, the sign and the predicted tem-
perature dependence strikingly resemble experiment[10].

In summary, vertical energy transfer in graphene het-
erostructures has strong impact on lateral charge trans-
port in the Coulomb drag regime, dominating the drag
response at CN. Drag measurements thus afford a unique
probe of energy transfer at the nanoscale, a fundamental
process which is not easily amenable to more conven-
tional techniques such as calorimetry, and is key for the
physics of strong interactions that occur near neutrality.
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