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We study the Mott transition of a mixed Bose-Fermi system of ultracold atoms in an optical lattice,
where the number of (spinless) fermions and bosons adds up to one atom per lattice, nF + nB = 1.
For weak interactions, a Fermi surface coexists with a Bose-Einstein condensate while for strong
interaction the system is incompressible but still characterized by a Fermi surface of composite
fermions. At the critical point, the spectral function of the fermions, A(k, ω), exhibits a pseudo-
gapped behavior, rising as |ω| at the Fermi momentum, while in the Mott phase it is fully gapped.
Taking into account the interaction between the critical modes leads at very low temperatures either
to p-wave pairing or the transition is driven weakly first order. The same mechanism should also
be important in antiferromagnetic metals with a small Fermi surface.

A recent experiment with an ultra-cold mixture of
bosonic and fermionic Yb atoms in an optical lattice [1]
has found a remarkable quantum phase that can be de-
scribed as a mixed Mott insulator. Such a state[2–4] is es-
tablished in the strongly interacting regime when the av-
erage site occupation of the bosons and fermions together
is an integer, nB+nF = 0, 1, .... While the state is incom-
pressible and hence fluctuations of the total density are
gapped, the fermions can still move around by exchang-
ing with the spinless bosons. Hence the mobile objects
are bound states of a fermionic atom and a bosonic hole.
Depending on their effective interactions, these bound
states can form a number of different phases, including
a Fermi liquid or a paired condensate. But those are
rather strange fluids, made of composite fermions that
carry zero net particle number. Accordingly, the spectral
function of the original fermionic atoms will not display
a quasi-particle peak. This phase, established for suffi-
ciently strong interactions, should be contrasted with the
weakly interacting limit where the fermionic atoms form
a conventional Fermi sea coexisting with a Bose conden-
sate (BEC) of the other species. In this paper, we investi-
gate the quantum phase transition from the incompress-
ible mixed Mott state to the compressible metal/BEC
phase and the fate of the Fermi surface across the tran-
sition.

In most solids the Mott quantum critical point (QCP)
from a metal to an insulating state is masked by anti-
ferromagnetism. In cases where frustration suppresses
magnetism, however, it has been argued that a direct
transition from a metallic phase to an insulating and
incompressible U(1) spin liquid is possible [5–8]. Yet
the understanding of this transition remains rudimentary
and is unconfirmed by experiment. We argue that with
ultracold mixtures of bosons and fermions it is possible
to study a similar transition directly. Although coupling
to a deconfined U(1) gauge field is missing in our case,
important features, such as critical vanishing of quasi-
particle weight and opening of a pseudogap, remain.

FIG. 1: Schematic phase diagram of the Bose Fermi mixture
at combined integer filling. At weak interaction the bosons
form a BEC and the fermions form a Fermi liquid, unsta-
ble at very low temperature to p-wave pairing. At strong
interactions the system goes into the mixed Mott phase, in
which composite neutral fermions (with respect to total den-
sity) still exist as low energy degrees of freedom. Depending
on parameters they can form either a Fermi liquid (FL) a p-
wave superfluid or phase separate. The nature of the Mott
critical point depends on how it is approached, by tuning the
boson-fermion or the boson-boson interactions.

Model – For simplicity we confine ourselves to spinless
fermions mixed with a single species of bosons in three di-
mensions (d = 3), described by the generalized Hubbard
model

H = −tb
∑
〈ij〉

(b†i bj + H.c.)− tf
∑
〈ig〉

(f†i f j + H.c.)

+
1

2
Ubb

∑
i

nbi(nbi − 1) + Ubf
∑
i

nbinfi. (1)

Here b†i and f†i create bosonic and fermionic atoms re-
spectively and nbi (nfi) are the bosonic (fermionic) site
occupations. Mott phases can occur for commensurate
filling (we take 〈nbi〉+ 〈nfi〉 = 1).

When the interactions are large enough, Ubf � tf , tb
and Ubb � tb, fluctuations of the density are strongly
suppressed and the system is deep in the Mott phase.
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After eliminating perturbatively the empty and doubly
occupied states one obtains a purely fermionic model[2]

H = −teff
∑
〈ij〉

(c†i cj + H.c.) + Veff
∑
〈ij〉

ninj , (2)

with teff = tf tb/Ubf and Veff = (t2b + t2f )/Ubf − 2t2b/Ubb.
Here c†i = f†i bi is a composite fermion, quadratic in the
original fields, ni = c†i ci and the vacuum |Ω 〉 of the
composite fermion is the singly occupied bosonic site.

The ground state of the fermion model (2) can be a
Fermi liquid for Veff ≥ 0, a p-wave superfluid for small
or moderatly large negative Veff, or be unstable to phase
separation for large negative Veff, |Veff| � teff. A phase
transition out of the Mott state is driven by reducing the
strength of the interactions Ubb, Ubf , or both.

Consider first tuning the transition by changing Ubf ,
while Ubb remains large. For the resulting hard-core
bosons it is useful to rewrite the problem in terms of
holes in the Mott insulator, h†i = bi. The condition of
unity filling reads now 〈nhi〉 = 〈nfi〉 and the repulsive
interaction is mapped to attraction, Ubf → −Ubf . In
these variables, the Mott transition can be understood
as binding of bosons to fermions, with the Mott state
being a Fermi liquid of the molecules c†i |Ω 〉 = f†i h

†
i |Ω 〉

as Veff > 0 in this limit.
A similar transition, from a Fermi surface of atoms

to a Fermi surface of molecules, has been considered in
Ref. [9] for a Bose-Fermi mixture in the continuum with
an interspecies Feshbach resonance. Our lattice model
with Ubb � Ubf maps to this continuum problem for low
densities, 〈nfi〉 � 1. We therefore expect two transitions
as found in [9]. First a Fermi sea of molecules starts to
form beyond a critical value of the attraction Ubf = Uc1
and coexists with the atomic Fermi sea and a BEC. The
volume of the molecular Fermi surface grows continuously
until it reaches the full Luttinger volume, corresponding
to the full fermion density, at Ubf = Uc2, where the con-
densate fraction vanishes and the Mott insulating state is
reached. As pointed out in Ref. [9], interactions are irrel-
evant at such a QCP in d = 3 and due to the quadratic
dispersion at the bottom of the bosonic and fermionic
bands, ω ∝ k2, the dynamical critical exponent is z = 2.
The same theory can be applied for nearly unity filling by
the fermions if we apply the particle hole transformation
on the fermions rather than the bosons. Other phases
with broken lattice symmetry are possible at certain in-
termediate fillings [10, 11].

We now turn to the main focus of this paper and
consider the transition driven by reducing the boson-
boson interaction Ubb for large Ubf . In this case we
can eliminate the fermionic doublon state f†i b

†
i | 0 〉 . Us-

ing again the single boson state |Ω 〉 as vacuum, we
introduce besides the single fermion state c†i |Ω 〉 and
bosonic hole h†i |Ω 〉 defined above also the bosonic dou-

blon p†i |Ω 〉 = 2−
1
2 b†i |Ω 〉 . The Hamiltonian (1) pro-

jected to low energies becomes

Heff =
1

2
Ubb

∑
i

(npi + nhi)− µf
∑
i

nci (3)

−tb
∑
〈ij〉

[
(
√

2p†i + hi)(
√

2pj + h†i ) + H.c.
]

−tf
∑
〈ij〉

(
c†ihih

†
jcj + H.c

)
+ Ucc

∑
〈ij〉

ncincj

supplemented with the hard-core condition npi + nhi +
nci ≤ 1 and Ucc = (t2b + t2f )/Ubf . Unity filling implies
〈nhi〉 = 〈npi〉 and the transition from the Bose-Fermi
Mott state to the superfluid is a simultaneous conden-
sation of doublons and holes just as in a conventional
bosonic Mott-superfluid transition [12].
Critical theory – The most general action (including

the most relevant terms) describing the QCP is given by

S = Sb + Sf + Sbf

Sb =

∫
dxdτ |∂τφ|2 + v2

s |∇φ|2 + r|φ|2 + ub|φ|4

Sf =

∫
ψ̄(∂τ + ~vF · (−i∇− ~kF ))ψ − uf ψ̄∇ψ̄ · ψ∇ψ

Sbf = ubf

∫
dxdτ ψ̄ψ|φ|2 (4)

Here the bosonic order parameter field is related to the
bosons through φ(x) ∼

√
1/vs(h(x) + p†(x)). As in the

conventional bosonic Mott transition, 〈nhi〉 = 〈npi〉 en-
tails the absence of linear time derivatives φ∗∂τφ. For-
mally the same theory was considered by Yang [13] to
address the Mott transition at integer boson filling in con-
tact with a fermi sea at a non-commensurate filling. The
crucial difference here is that in our theory the ψ fermions
are not the physical atoms but rather composite objects.
In the supplementary material we discuss how the pa-
rameters vs, vF , uf , and ubf in Eq. (4) are related to the
original coupling constants.

The bosonic sector of the field theory (4) is identical to
that of the commensurate Mott transition in the purely
bosonic system where ω ∼ vsk, resulting in dynamical
exponent z = 1. First, we analyze the coupling of the
bosons to the fermions by a scaling analysis (~r → λ~r,
τ → λτ , φ → φ/λ and ψ → ψ/λ3/2 in d = 3) around
this fixed point (uf = 0 = ubf = 0) which shows that
ubf is irrelevant, ubf → ubf/λ. An alternative scaling
scheme[14], leading to the same conclusion is discussed
in the supplement. Moreover, assuming tf � tb, the bare
couplings uf and ubf are small (see supplement). This
does, however, not imply that ubf can be set to zero as
upon integrating out the fermions it generates a marginal
long-ranged interaction of φ, see below. uf is marginal
and leads for uf > 0 to p-wave superfluidity.

We first assume, that the pairing instability of the
Fermi surface can be neglected as either uf is repulsive or



3

so small that the transition temperature is smaller than
T . Due to the irrelevance of ubf one can integrate out
the fermions perturbatively to obtain a purely bosonic
theory with a modified quartic interaction term

Sint =

∫
(u0 + u1f(ω/vF q))φ

∗
k−q,ν−ωφ

∗
k′+q,ν′+ωφk′,ν′φk,ν .

(5)
The ω and q dependence of the new interaction vertex

f(x) =
ix

2
ln

(
ix+ 1

ix− 1

)
. (6)

is inherited from the fermionic density-density correlation
function. We obtain u1 ≈ u2

bfν(0) = 64v2
svF = 4

π
vF
vs

ub
where ν(0) is the fermion density of states. The local
interaction u0 also receives a correction, u0 ≈ ub + u1.

To investigate the fate of the critical point we set up
a perturbative renormalization group (RG) by integrat-
ing out momenta with Λe−l < |q| < Λ. A rescaling,
k → ke−l and ω → ωe−zl, restores the original cutoff Λ.
Due to the ω dependence of the interactions, already to
one-loop order one obtains self energy corrections which
are absorbed by rescaling of the field φ and a correction
to the dynamical critical exponent z (see supplementary
material). A complication is that higher-order long range
terms of the form unf(ω/vfq)

n are generated during the
RG flow. The scaling is therefore determined by cou-
pled equations for the dimensionless coupling constants
gn(l) = un(l)/(8π2v3

s) and the dimensionless Fermi ve-
locity η(l) = vF (l)/vs.

dη

dl
=

2

3

∞∑
m=1

fηm(η) gm (7)

dg0

dl
= −10 g2

0 − 12g0

∑
m

fgm(η) gm − 4

∞∑
m,n=1

fgm+n(η)gmgn

dgn
dl

= −2

n∑
m=0

gn−m gm − 4gn

∞∑
m=0

fgm(η) gm, n > 0,

where fηm(η) = 4η
π

∫∞
0

3η2x2−1
(η2x2+1)3 f(x)mdx and fgm(η) =

4η
π

∫∞
0

1
(η2x2+1)2 f(x)mdx are functions of η(l).

In solving for the flow we keep terms with n < nmax
and find that the resulting flow converges with nmax
(keeping 10-15 terms is enough in practice, see supple-
mentary material). This scheme works well since the
newly generated interactions are all irrelevant. In two
dimensions, where they are relevant the proliferation of
terms can be avoided by introducing an auxiliary field
[15].

Typical RG trajectories in the subspace g1 versus g0

are shown in Fig. 2. Initially, both g0 and g1 drop but
the flow of g1 is much slower due to its non-local nature.
Therefore g1 is finite when g0 reaches zero, driving g0 to
negative values through the last term in the flow equation
(8) for g0. This leads to a first order transition.

FIG. 2: RG flow for three different values of the bare Fermi
velocity vF /vs using nmax = 13 (see text). The inset is a
zoom near g0 = 0 showing that for the three larger val-
ues of vF /vs the local interaction is driven to negative val-
ues before the flow is cut off at the scale of the pairing gap
∆ = εF exp(−8πvs/vF ). For these values we expect a fluctu-
ation driven first order transition.

In the RG approach described above we have neglected
the induced attraction uf between fermions, which would
lead to a pairing instability and opening of a gap ∆ ≈
EF exp(−8πvs/vF ) in the Fermi surface. Such a gap sup-
presses the non-local couplings at low energies vsΛe−l <
∆. Therefore, if the coupling constants gn have not yet
driven the local coupling g0 negative at that scale, the
first order transition will be avoided. Numerical solu-
tion of the flow equations suggest that this is the case if
the bare ratio vF /vs < 0.18, while for vF /vs > 0.18 we
expect a first order transition. In either case the Fermi
surface is expected to give way to a small p-wave gap
near the transition for T → 0.

Our analysis applies to a number of other QCPs where
bosonic and fermionic degrees of freedom coexist. Con-
sider, for example, a metallic commensurate antiferro-
magnet, where the shape of the Fermi surface is such,
that the ordering wave vector ~Q does not connect differ-
ent parts of the Fermi surface. In such a situation only a
quadratic coupling of fermions to a z = 1 bosonic QCP
survives. Our analysis shows that in d = 3 this coupling
will render the QCP always weakly first order as long as
no superconductivity gaps out the Fermi surface.
Pseudogap – We now discuss the experimental ramifi-

cations of the quantum phase transition focussing on the
spectral function associated with emission of a fermionic
atom in RF spectroscopy [16, 17]. The crucial point is
that in the long-wave length limit the physical atomic
fermions fi are composite objects in terms of the weakly
coupled fields ψ and φ, f(x) ∼

√
1/vs φ(x)ψ(x) as fi =

h†i ci. Hence, the spectral function should be found from
the Green’s function G(x, τ) = 〈ψ̄(x, τ)φ∗(x, τ)φ(0)ψ(0)〉.

For the sake of this discussion we ignore all loga-
rithmic corrections which ultimately lead either to p-
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FIG. 3: (a) Spectral function A(k, ω) of the fermions at
k = kF in the superfluid phase, critical point and Mott insu-
lator (r = −0.04, 0, 0.04, vs/vF = 3). Inset: local density of
states A(ω) =

∫
dkA(k, ω) in the three cases. (b) The spectral

function A(k, ω) at the critical point.

wave pairing or the fluctuation induced first order tran-
sition. These subtle effects are only noticeable at ex-
ponentially low energies. The salient features of the
spectral function at higher energies (or temperatures)
are captured within the Gaussian theory obtained from
expansion about the saddle point of (4), which implies
G(x, τ) = Gψ(x, τ)Dφ(x, τ), where Gψ is the free fermion
Green’s function of the composite fermions.

In the superfluid side, we can take a Bogoliubov expan-
sion of the order parameter φ = φ0 + δφ1 + iδφ2, to split
the bosonic component of the Green’s function into three
contributions: Dφ(x, τ) = |φ0|2+D1(x, τ)+D2(x, τ). The
condensate part |φ0|2 combined Gψ, gives a delta func-
tion contribution of magnitude |φ0|2 dispersing with the
free fermion dispersion. The phonon contribution leads
to a continuous spectrum rising linearly with ω. Another
continuous contribution onsets above the energy gap of
the amplitude (or Higgs) mode. All three features are
seen Fig. 3(a), where the spectral function A(k, ω) at
k = kF has been calculated for c/vF = 3 and a quadratic
fermionic dispersion εk = k2/2.

Upon approaching the critical point, the quasiparticle
weight Z ∼ |φ0|2 ∼ U cbb − Ubb decreases to zero. Cor-
respondingly, a pseudogap develops in the local density
of states, see inset of Fig. 3(a). Directly at critical-
ity, Ubb = U cbb, where Z = 0, the spectral function at
k = kF rises linearly in ω, see Fig. 3(a). The underly-
ing quadratic dispersion of the composite fermions and
the linear dispersion of the bosonic excitations are clearly
visible in Fig. 3(b).

Finally, inside the Mott phase the bosonic fluctuations
can be treated as a free massive field. Hence upon convo-
lution with Gψ one obtains a fully gapped spectral func-
tion despite the existence of a gapless Fermi liquid.

The gapless fermions of the Mott insulator are hid-
den from standard single particle probes such as pho-
toemission or the momentum distribution measured in
time of flight. Interestingly however, the hidden Fermi
surface can be revealed by noise correlations in time of

flight images[18]. The boson-fermion cross correlations
at momenta k and k+q are directly proportional to the
momentum-q distribution of the composite fermions,

〈ncq〉 ≈
∑
k

〈nfk+qn
b
k〉 − 〈n

f
k+q〉〈n

b
k〉. (8)

The approximation becomes exact deep in the Mott in-
sulating state, where f†i bj = δijc

†
i for Ubf , Ubb →∞. The

composite Fermi surface can also be observed by Bragg or
lattice modulation probes that couple asymmetrically to
bosons and fermions. The appropriate structure factors
will display a gapless spectrum in the composite Fermi
liquid phase or a small gap in case of p-wave pairing.
Conclusions – Mixed boson-fermion systems in optical

lattices open a new route, for both theoretical and exper-
imental investigation of unconventional Mott transitions
that entail the destruction of fermionic quasi-particles
and the emergence of hidden Fermi surfaces of compos-
ite particles. We presented a theory that accounts for
the critical behavior of the single fermion spectral func-
tion and gives a simple and tractable example for the
emergence of a pseudogap in a strongly correlated sys-
tem. While for d = 3, the nature of the phase transition
depends on the ratio the interactions, see Fig. 1, it has
been shown that in d = 1 always a single z = 1 transition
is expected[19].

An interesting open question is the nature of the possi-
ble tri-critical point postulated in Fig. 1 where Ubb ≈ Ubf
and two z = 2 transitions meet with the z = 1 critical
point. Interestingly, the generalized Hubbard model (1)
exhibits supersymmetry at Ubb = Ubf , µb = µf and
tf = tb [20]. The ground state at the super-symmetric
point has no fermions but may help to elucidate the na-
ture of the tri-critical point for low fermion density. An-
other open question concerns the Mott transition in a
commensurate mixture of bosons and spinfull fermions.
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