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Long-range correlations and coherent structures in magnetohydrodynamic equilibria
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The equilibrium theory of the 2D magnetohydrodynamic equations is derived, accounting for the
full infinite hierarchies of conserved integrals. An exact description in terms of two coupled elastic
membranes emerges, producing long-ranged correlations between the magnetic and velocity fields.
This is quite different from the results of previous variational treatments, which relied on a local
product ansatz for the thermodynamic Gibbs distribution. The equilibria display the same type of
coherent structures, such as compact eddies and zonal jets, previously found in pure fluid equilibria.
Possible consequences of this for recent simulations of the solar tachocline are discussed.

PACS numbers: 47.10.-g, 05.70.Ln, 05.90.+m, 52.30.-q

The ideal magnetohydrodynamic (MHD) equations

∂tv + (v · ∇)v + 2Ω× v = −∇P + J×B

∂tB = ∇× (v ×B) (1)

describe the evolution (in a frame of reference with an-
gular velocity Ω) of the velocity field v of a perfectly
conducting fluid under the influence of external and inter-
nal forces (P includes pressure, centrifugal force, gravity,
etc.), and advection of the magnetic field B by the veloc-
ity field [1]. The equations are closed through Ampere’s
law J = ∇ × B and the incompressibility constraints
∇ · v = 0, ∇ ·B = 0.
A number of systems such as the solar tachocline [2],

and possibly the Earth’s core-mantle boundary [3], are
approximately governed by a 2D approximation in which
v,B are horizontal, depending only on the horizontal co-
ordinates r = (x, y) in a domain D of the xy-plane (with
1D boundary ∂D) [4]. The current J = J ẑ and vorticity
∇ × v = ωẑ may then be treated as scalars. One may
also express B,v in terms of a potential A and stream
function ψ: B = ∇ × (Aẑ), v = ∇ × (ψẑ), with the 2D
Laplacian relationships J = −∇2A, ω = −∇2ψ. The
equations then reduce to two scalar equations

∂tω + v · ∇(ω + f) = B · ∇J
∂tA+ v · ∇A = 0 (2)

with Coriolis parameter f(r) = 2Ω sin(ϕ), with latitude
ϕ(y). In the beta-plane approximation one linearizes
f(y) = f0+ βy about a reference ϕ0. The total energy is

E =
1

2

∫

d2r
(

|v|2 + |B|2
)

=
1

2

∫

d2r
(

|∇ψ|2 + |∇A|2
)

.

(3)
Its conservation requires lossless boundary conditions,
e.g., periodic or “free-slip”: B · n̂ = 0, v · n̂ = 0, with n̂

the local normal to ∂D. The latter imply constant values
of A,ψ on each connected component of ∂D.
The pure 2D fluid equation (B ≡ 0) exhibits a tur-

bulent inverse cascade: small scale vortices self-organize
into large scale flows, limited only by the domain size.

In a forced system, this leads to growing flows, limited
only by dissipation. These take the form of strong jet-
like structures, or large coherent vortices, which have
strong implications for geophysical flow stability and
global transport. The weather bands and Great Red
Spot of Jupiter are famous examples. For weak driv-
ing and dissipation, these flows may be modeled as near-
equilibrium. Application of statistical mechanics to the
fluid equations indeed produces such structures [5–12].

Similar flows in the solar tachocline, which sharply di-
vides the rigidly rotating interior radiation zone from the
differentially rotating outer convection zone, would have
strong implications for angular momentum transport be-
tween the two zones [2]. Recent 2D MHD simulations
[2, 4], however, have found that the presence of even
weak B tends to break up large scale flows. Although
B indeed destroys the infinite set of vorticity conserva-
tion laws that lead to the fluid inverse cascade, they are
replaced by an entirely new infinite set of magnetic con-
servation laws [13]. This motivates the present investi-
gation of the equilibria allowed by these new laws, and
what conditions might limit their amplitude.

It will be shown that the new conservation laws in-
deed produce large scale flows, but of distinctly different
character. In contrast to Euler flow, where all initial en-
ergy cascades to large scales, in 2D MHD a finite fraction
flows to small scales, generating large microscale fluctua-
tions. For small initial B, these can be much larger than
the mean flow [2, 4]. However, dissipation effects differ-
entially tend to suppress these, and some form of driv-
ing might amplify the mean flow to more visible levels.
The results here may then point to more careful stud-
ies of the types driving and initial conditions that could
produce stronger large scale flows, and their physical re-
alizability. In addition, unlike Euler flow, in which the
small scale fluctuations are completely uncorrelated on
the microscale [5, 7], the 2D MHD flows are shown to ex-
hibit long-ranged power-law correlations, that could also
be confirmed in simulations. Such correlations were in-
visible to earlier treatments which used a local product
approximation for the Gibbs distribution [15, 16].
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The MHD equations are nonlinear, thereby produc-
ing turbulent initial evolution from a spatially complex
initial condition. However, at late time, the flow may
equilibrate to a steady state. Unusually, such 2D fluid
steady states are not necessarily quiescent, but can ex-
hibit spatial structure such as large scale vortices or zonal
jets [5–12]. The origin, and diversity, of these structures
lies in the infinite number of conservation laws, beyond
the usual energy (along with momentum or angular mo-
mentum if the relevant translation or rotation symmetry
exists) constraining the flow [13]. If one sets B ≡ 0,
the first line of (2) is the Euler equation, and the re-
sulting advective conservation of the potential vorticity
ωp = ω + f implies conservation of all spatial integrals
(Casimirs) Kg =

∫

D d
2rg(ωp), with g an arbitrary 1D

function. However, any nonzero B · ∇J breaks this con-
servation [14], replacing it by advective conservation of
A [second line of (2)]. The new Casimirs are [13]

Jg =

∫

d2rg(A), Kg =

∫

D

d2r(ω + f)g(A) (4)

for arbitrary 1D functions g. Integrating by parts, one
may also replace ωg(A) → (v · B)g′(A). These may be
parameterized as conservation of the functions j(σ), k(σ)
for all σ obtained using g(s) = δ(s − σ). Finally, any
conserved momentum may be expressed in the form

P =

∫

d2rαω =

∫

d2r(∇α)×v = −
∫

d2r∇α·∇ψ, (5)

for some fixed function α(r) [17].
Under the usual ergodic assumptions (whose validity

is far from obvious, and known to be violated for some
initial conditions [18]), the equilibrium statistics are ob-
tained from the grand canonical partition function

Z[β, λ, µ, ν] =

∫

D[A,ψ]e−βG[A,ψ], (6)

and associated free energy F = −T ln(Z). The functional
integral is over all fields A,ψ (obeying the appropriate
boundary conditions), β = 1/T is the inverse tempera-
ture, and the Gibbs functional is G = E−Jµ−Kν −λP :

G =

∫

d2r

{

1

2
|∇A|2 + 1

2
|∇ψ|2 − ν′(A)∇A · ∇ψ

+ λ∇α · ∇ψ − [µ(A) + fν(A)]

}

, (7)

where Lagrange multipliers have been introduced for each
conserved integral: functions µ(s), ν(s) and parameters
β, λ are adjusted to obtain the values of j(σ), k(σ), P , E
defined by the initial flow. The physical model associated
with G is that of two membranes, with “heights” A,ψ,
and unit surface tension, coupled through their gradients.
The P term also acts to bias ∇ψ; in particular, G favors
B parallel to ν′(A)v + λ∇× α. The term µ(A) + fν(A)

is an external potential, confining A near its minimum,
and depends (smoothly) on position through f(r).
The equilibria governed by G have been previously in-

vestigated [15, 16] using a variational approach in which
v,B were treated as spatially uncorrelated. The exact
physics of G, however, dictates something quite differ-
ent. The elastic interactions generate very long-ranged
correlations, with distortion in the surfaces interacting in
a Coulomb-like fashion, leading to log-divergent fluctua-
tions, and dipole-like correlations for v,B.
To understand the nature of the equilibrium states, it is

extremely useful begin with a discrete spatial mesh, and
then consider the continuum limit. To this end, using a
square lattice with mesh size a one obtains

βGa =
1

2
β
∑

〈i,j〉

{

(Ai −Aj)
2 + (ψi − ψj))

2

− [ν′(Ai) + ν′(Aj)](Ai −Aj)(ψi − ψj)

+ 2λ(αi − αj)(ψi − ψj)
}

− βa2
∑

i

[µ(Ai) + fiν(Ai)], (8)

in which 〈i, j〉 are nearest neighbors. The functional
integral D[A,ψ] → ∏

i

∫

dAidψi now becomes (up to
overall normalization) a product of single site integrals
[19]. We define also Bi = a−1(Ai+ŷ − Ai, Ai − Ai+x̂),
vi = a−1(ψi+ŷ − ψi, ψi − ψi+x̂). It is apparent here that
if β remains finite as a→ 0 then the first term will yield
O(

√
T ) fluctuations between neighboring sites, and the

second term becomes negligible [20]. Well defined hydro-
dynamic equilibria, with nontrivial competition between
kinetic and potential energies requires that β scale with
a. Specifically, taking β(a) = β̄/a2 yields O(aT̄ 1/2) site-
to-site fluctuations, and continuous A(r), ψ(r). On the

other hand Bi, vi will have finite, O(
√
T̄ ), site-to-site

fluctuations, yielding non-differentiable continuum A,ψ.
With this scaling there are two surviving contributions to
G as a→ 0. Decomposing A = A0 + δA, ψ = ψ0 + δψ in
which A0 = 〈A〉, ψ0 = 〈ψ〉 are the equilibrium averages
(self-consistently determined below) one obtains

G[A,ψ] = G[A0, ψ0] + G2[δA, δψ;A0] +O(a),

G2 =
1

2

∫

d2r
[

|∇δA|2 + |∇δψ|2

− 2ν′(A0)(∇δA) · (∇δψ)
]

=
1

2

∫

d2r
[

[1 + ν′(A0)]|∇δφ−|2

+ [1− ν′(A0)]|∇δφ+|2
]

, (9)

in which δφ± = (δA ± δψ)/
√
2 are independent Gaus-

sian fields [21]. We have reverted, for compactness, to
continuum notation. For smooth A0, ψ0, all other terms,
including those linear in δA, δψ, vanish with a→ 0. From
G2 one therefore obtains the exact free energy

F [β̄, λ, µ, ν] = G[A0, ψ0] + F2[A0] (10)
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in which the Gaussian fluctuation free energy F2 has a
well defined a → 0 limit. It is not computable in closed
form for general A0, but for constant ν′(A0) ≡ ν′0 and
periodic boundary conditions one obtains

F2 =
|D|
β̄

∫

BZ

d2k

(2π)2
ln

[

β̄

2π

√

1− ν′20 E(k)

]

E(k) ≡ 4
[

sin2(kx/2) + sin2(ky/2)
]

, (11)

in which |D| is the area of D, and the Brillouin zone is
defined by π < kx, ky ≤ π. More generally, F2 is obtained
from the log-sum of the eigenvalues of the (generalized
Laplacian) operators O± = −∇ · [1∓ ν′(A0)]∇.
The divergence of β = β̄/a2 in (6) means that A0, ψ0

are determined self-consistently by minimizing F . The
conditions δG0/δψ0(r) = 0, δ(G0 + F2)/δA0(r) = 0 pro-
duce, respectively, the equilibrium equations

v0 = ν′(A0)B0 − λ∇× α

ω0 + ν′(A0)J0 = µ′(A0) + fν′(A0)

+ ν′′(A0)γ(r, r;A0), (12)

whereB0 = ∇×(A0ẑ), etc., are the other derived equilib-
rium fields. The first equation provides a direct relation
between the equilibrium velocity and magnetic field: B0

is colinear with v0 up to a mean flow subtraction. Sub-
stituting the curl of the first equation into the second,
one obtains a closed equation for A0:

−∇× {[1− ν′(A0)
2]B0} = µ′(A0) + fν′(A0) + λ∇2α

+
1

2

[

ν′(A0)
2
]′ |B0|2 + ν′′(A0)γ(r, r). (13)

The fluctuation-derived nonlocal term at the end is ob-
tained from the cross-correlation function

γ(r, r′) = 〈∇δA(r) · ∇δψ(r′)〉2 = 〈δB(r) · δv(r′)〉2. (14)

If one defines the Green functions of the operators O±,

−∇ · [1∓ ν′(A0)]∇G±(r, r′) = δ(r− r
′), (15)

which characterize the membrane fluctuations,

G±(r, r′) =
β̄

a2
〈[δφ±(r) − δφ±(r′)]2〉2, (16)

then one obtains the relation

γ(r, r′) =
1

2
∇ · ∇′[G+(r, r′)−G−(r, r′)]. (17)

Solutions to (15) yield the electrostatic potential gener-
ated by a unit charge at r

′ with spatially varying di-
electric function ǫ±(r) = 1 ∓ ν′(A0). By Gauss’s law,
the displacement field ǫ±∇G± has unit flux through any
bounding contour, and it follows that G±(r − r

′) ∼
(1/2πǫ±) ln(|r − r

′|/a) grows logarithmically with dis-
tance. This unbounded wandering reflects the usual ther-
mal roughening result for 2D membranes [22].
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FIG. 1: Left: Equilibrium jet solution obtained using peri-
odic boundary conditions in x. Right: Equilibrium vortex
solution obtained using free slip boundary conditions in both
x and y. Vortex solutions exist as well for periodic bound-
ary conditions, but the numerics are more involved. Stream
lines and magnetic field lines are level curves of constant po-
tential A0 (bottom panels) or current density J0 (top pan-
els). For simplicity we set T̄ = 0 (no microscale fluctua-
tions), f = 0 (no rotation), λ = 0 (no net mean flow), take
constant ν′(A) = ν′0 (hence B0 = v0/ν

′

0), and use the form

µ(A) = −γ−1 ln[1 + e−γ(A−µ1)]. For large γ < 0, the latter
tends to produce a two level system, with J0 = ω0/ν

′

0 taking
values 0 or q = (1 − ν′20 )−1, and the parameter µ1 controls
the proportion of each level. Plotted are actually the scaled
quantities A0/q, J0/q, with parameters γ0 = γq, µ0 = µ1q
specified in the titles. The results are then independent of q
(and hence of the choice of ν′0).

For a translation invariant system (i.e., periodic, uni-
form), one may replace ∇′ → −∇ and (15) implies that
γ ≡ 0 for r 6= r

′, and γ(r, r) = ν′0/2β̄[1 − ν′20 ]. For this
case, the locality assumption [15] is valid [23]. Otherwise
one obtains nonlocal contributions to γ(r, r), even for a
uniform system with free slip boundary conditions: non-
local contributions then arise from image charges outside
D that enforce the boundary conditions on G±.
Once the equilibrium solution is obtained, the values of

the conserved variables may be obtained from derivatives
of F at fixed A0,Ψ0:

E =
1

2

∫

D

d2r
[

|v0|2 + |B0|2 + ε(r, r)
]

P = −∂F
∂λ

=

∫

D

d2rαω0

j(σ) = − δF
δµ(σ)

=

∫

D

d2rδ[σ −A0(r)]

k(σ) = − δF
δν(σ)

=

∫

D

d2r
{

(ω0 + f)δ[σ −A0(r)]

− γ(r, r)δ′[σ −A0(r)]
}

. (18)

where ε(r, r′) = −∇·∇′[G+(r, r′)+G−(r, r′)] determines
the microscale fluctuation part of the energy. The ex-
tremum condition ensures that all derivatives with re-
spect to the implicit dependence of A0, ψ0 on the La-
grange multipliers cancels out.
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Comparing (4), it is seen, due to continuity of A, that
j(σ) is a large-scale quantity: it is its own equilibrium
average. Hence the level sets of the initial A(r, t = 0))
are exactly preserved in the equilibrium A0(r). One im-
plication is that a low-amplitude initial A will produce an
identically low-amplitude A0. However, e.g., for a spa-
tially irregular initial condition with comparatively large
energy, one will have ε ≫ |v0|2, |B0|2 and the physical
equilibrium fields will be masked by fluctuations. This
may help explain what is observed in simulations [2, 4].
For increasing initial A, especially in the presence of forc-
ing and weak dissipation, one may expect clear equilib-
ria to emerge more strongly, but the exact conditions
required for this remain to be determined.
Equations (12), (17) and (18) are the basic results of

this paper. These equations are nonlocal and highly non-
linear, and generally require a numerical solution. How-
ever, some general properties may be inferred from the
basic form of the effective Hamiltonian (9). The G0 term
reflects a straightforward classical surface tension min-
imization problem. The fluctuations locally stretch the
membranes and hence act to renormalize the surface ten-
sion, but in a way that depends self-consistently on the
averagemembrane position A0, ψ0, which in turn respond
to the external forces provided by the µ+fν and λα terms
in (7). Thus, a stretched region of a membrane may be
expected to have reduced amplitude fluctuations. The
minimization of F accounts fully for both effects. Figure
1 shows examples of very simple equilibrium solutions
in a rectangular domain (with model parameters speci-
fied in the caption), demonstrating the existence of both
vortex and jet structures.
Unlike the Euler case, where the conserved integrals

ensure bounded ω = ∇× v, thereby generating continu-
ous v and differentiable ψ, for 2D MHD only continuity
of A,ψ are provided, and this occurs now in response to
the squared-gradients in the energy, not in response to
the conserved integrals. The latter also ensures bounded
δv, δB, but this in turn allows for finite microscale en-
ergy density ε. The second derivatives ω, J then have
unbounded fluctuations. Since simulations often propa-
gate A,ω using (2), extra care may then be required to
ensure reasonable equilibration. In particular, if (e.g.,
hyperviscous) dissipation acts too strongly to quell the
micro-fluctuations, it may also bleed energy out of the
large scale flow. There could also be physical analogues
of this effect, depending on the precise nature, e.g., of
the true solar tachocline dissipation mechanisms. These,
and presumably many other, considerations must enter
the implications of the theory developed here.
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