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Abstract

In the process of dissipative relaxation, there is strong astrophysical and laboratory evidence that

plasmas tend to evolve towards the well-known Woltjer-Taylor state, specified by ∇ × B = αB for

constant α. To explain how such a state is reached, Taylor developed his famous theory based on

the conjecture that relaxation is dominated by short wavelength fluctuations. However, there is

no conclusive experimental or numerical evidence in support of Taylor’s conjecture. A new theory

is developed, which predicts that the system will evolve towards the Woltjer-Taylor state for an

arbitrary fluctuation spectrum.
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In both astrophysical and laboratory environments [1–10] there is strong observational

evidence that plasmas tend to evolve towards the Woltjer-Taylor state,

∇ × B = αB, α is a constant. (1)

It is a perplexing theoretical question how, why, and under what conditions such a state is

reached. In 1958 Woltjer [11] first showed that Eq. (1) can be obtained by minimizing the

global magnetic energy

W ≡
ˆ

V

B2d3x, (2)

while keeping the global magnetic helicity

H ≡
ˆ

V

A · Bd3x (3)

constant. Here the integration domain V is the entire 3D volume with a perfectly-conducting

boundary. The justification for this minimization procedure is that in the ideal magnetohy-

drodynamic (MHD) model, the global magnetic helicity, H [Eq. (3)] is a constant of motion

[12]. Equation (1) is obtained through a simple variational procedure, with α the Lagrange

multiplier. To be faithful to history, we remark that Lust [13] and Chandrasekhar [14] had

previously discussed force free states with constant α in the context of astrophysics, although

no convincing justification was given as to why this should be the most interesting force free

field. Woltjer’s work was the first theoretical attempt to explain its importance; however, a

problem is that it does not specify exactly how this relaxed state can be reached. Within

ideal MHD, the global helicity defined in Eq. (3) is not the only invariant. In particular,

for any given flux surface ϕ = const., the magnetic helicity Hϕ ≡
´

ϕ
A · Bd3x in the vol-

ume enclosed by the flux surface is a conserved quantity. This implies that the topological

structure of the magnetic field is invariant. As a consequence [15–17], for an arbitrary initial

condition the final state specified by Eq. (1) will not be dynamically accessible.

To explain this puzzle, Taylor suggested that if the plasma is slightly resistive then the

topological structure of the magnetic field will be destroyed. Nonetheless, since the deviation

of the magnetic field from the ideal case will be relatively small, the global helicity H [Eq. (3)]

will still be approximately conserved. With this idea, Taylor argued that for any initial

condition the system will relax towards a final state which minimizes the global magnetic

energy while keeping the global helicity constant. Such a state is of course specified by
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Eq. (1). For this reason we will refer this relaxed state as the Woltjer-Taylor state throughout

this article.

Taylor’s theory has been successful at predicting the reversal of the toroidal field in a

series of RFP (Reverse Field Pinch) experiments [1–10]. Even though it has been extended

in various directions since the 1980s [17–26], the theory maintains its popularity because of

its simplistic beauty, and is widely accepted as a fundamental theory with great importance

in plasma physics. Nevertheless, there is one element of Taylor’s theory that remains un-

satisfactory. The relaxation of the plasma is caused by resistivity, and rigorously speaking

neither helicity, H , nor magnetic energy, W , are conserved quantities in resistive MHD. In

order to justify keeping H constant in the variational procedure, Taylor (along with other

researchers [10, 15, 16, 27]) observed that decay rates for H and W scale as

dH

dt
≃ −2V c2η

4π

∑

k

|k|B2
k (4)

dW

dt
≃ −2V c2η

4π

∑

k

k2B2
k (5)

where η is the resistivity, k is the wavenumber of the fluctuation and Bk is the Fourier

component of the magnetic field at k. (A detailed derivation these expressions is given by

Eqs. (13), (14) and (27), with their validity discussed near the end of the paper.) According

to Eqs. (4) and (5) [10, 15, 16, 27], dissipation of both W and H is due to the finite resistivity,

but the decay rate of W scales with k2, while that of H scales with k. If the relaxation

process is dominated by structures with wavelengths shorter than η1/2, dissipation of W will

be much larger than that of H . Taylor conjectured that this is indeed the case, providing

natural justification for minimizing W at fixed H . “Unfortunately”, as pointed out by

Ortolani and Schnack [10], “in the RFP there is no experimental evidence that relaxation is

produced by small scale turbulence. The dominant magnetic fluctuations associated with the

relaxation process appear to have global, long wavelength structure. This view is supported

by extensive numerical simulations, which show that relaxation is produced by the nonlinear

interaction of long wavelength instabilities. (Many of these results will be described in detail

in Chapter 5).” It is at least fair to surmise that experimental [1–10] and theoretical [28–35]

studies in the last 40 years do not provide conclusive evidence to support the conjecture

that plasma relaxation should be dominated by short wavelength structures. Realizing this

shortcoming in Taylor’s theory, Bhattacharjee et al. [17, 18, 20–22] discovered that for a

single helicity long wavelength resistive tearing mode, the global helicity is nearly constant,
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along with an infinite set of other approximate invariants. A theory of relaxation has been

developed using these invariants [17, 18, 20–22], and the relaxed state is in general different

from the Woltjer-Taylor state.

In this paper, we present a new theory on how the Woltjer-Taylor state can be reached

during resistive plasma relaxation, without invoking Taylor’s conjecture. We do not need to

assume that the fluctuation spectrum is dominated by short wavelength structures or that W

decays faster than H . In our theory, the Woltjer-Taylor state is not reached by minimizing

W at fixed H . We show that the Woltjer-Taylor state arises naturally as the final state of a

resistive MHD relaxation process at low plasma β, for any fluctuation spectrum. We prove

this fact as follows.

For any vector potential A and magnetic field B, the well-known Cauchy-Schwartz in-

equality is

QW − H2 ≥ 0 , (6)

Q ≡
ˆ

V

A2d3x . (7)

The equality is reached if and only if B = αA everywhere, with constant α. Amazingly,

this condition is exactly Eq. (1); i.e., the condition for the plasma to be in a Woltjer-Taylor

state. We will further prove that in the resistive MHD model the difference between QW

and H2 decreases with time, i.e.,

d

dt

(

QW − H2
)

≤ 0, (8)

and that equality in inequality (8) holds if and only if Eq. (1) is satisfied. These inequalities

[Eqs. (8) and (6)] thus imply that the non-negative quantity QW − H2 ceases to decrease in

time only when it is zero, demonstrating that the system must dynamically evolve towards

a Woltjer-Taylor state. When the system is far from this state, the rate of change, d(QW −
H2)/dt, can be significantly negative, meaning the system is evolving towards a Woltjer-

Taylor state at a fast pace. An illustration of the dynamical behavior of H2 and QW is

given in Fig. 1.

We now give proofs of inequality (8) and the fact that equality is reached if and only

if the plasma is in a Woltjer-Taylor state. As in previous studies, we will use the resistive

MHD equations [27] and assume that the thermal and kinetic energies are much smaller

than the magnetic energy. For clarity we give two separate proofs: in the first we utilize a
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Figure 1: Away from a Woltjer-Taylor state, QW − H2 is positive definite and decreasing in time

at a non-vanishing rate. Thus, the system is relaxing towards the Woltjer-Taylor state. The state

is reached when QW − H2 = 0.

Fourier decomposition, while the second is a direct proof in real space, which is more succinct

and transparent [36]. For notational simplicity, we use 〈a, b〉 to denote the following scalar

product between two vector fields a and b,

〈a, b〉 ≡
ˆ

V

a · bd3x .

The first method proceeds as follows. Let

(B, J , A) =
∑

(Bk, Jk, Ak) exp(ik · x) , (9)

then Ampï¿œre’s law is expressed as

jk =
ick × Bk

4π
, (10)

and ∇ × A = B as

ik × Ak = Bk . (11)

At k = 0, we will set A0 = 0 as there is no magnetic field associated with A0 and the

electromagnetic field vanishes on the boundary. To solve for Ak(k 6= 0) in terms of Bk, we

choose to work with the Coulomb gauge k · Ak = 0, which leads to

Ak =
ik × Bk

k2
(k 6= 0). (12)
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Note that (B∗
k, J∗

k , A∗
k) = (B−k, J−k, A−k), since (B, J , A) are real. Here u∗ denotes the

complex conjugate of u, and we adopt the notation u2 ≡ u · u∗ = |u|2 for the magnitude of

a vector u. In resistive MHD, the rate of change of H is given by

dH

dt
= −2cη

ˆ

V

j · Bd3x = −2cη 〈j, B〉 , (13)

where the Ohm’s law E + v × B/c = ηj has been used. Note that dH/dt can be both

positive and negative. The integral in Eq. (13) can be evaluated using Fourier components,

〈j, B〉 =

ˆ

V

j · Bd3x =
∑

k,l

jk · Bl

ˆ

V

exp[i(k + l) · x]d3x = V
∑

k

jk · B−k

= V
∑

k

jk · B∗
k = V

∑

k

icBk × B∗
k

4π
· k = V

∑

k 6=0

2cBkR × BkI

4π
· k , (14)

where V is the volume of the system, BkR and BkI are real and imaginary parts of Bk, and

use is made of the following identities

ˆ

V

exp[i(k + l) · x]d3x =















0, k 6= −l ,

V, k = −l ,
(15)

Bk × B∗
k = −2iBkR × BkI . (16)

Similarly,

H = V
∑

k 6=0

iBk × B∗
k

k2
· k = V

∑

k 6=0

2BkR × BkI

k2
· k . (17)

From Eqs. (13), (14), and (17), we have

dH2

dt
= −V 2c2η

π

∑

k

BkR × BkI · k
∑

k 6=0

BkR × BkI

k2
· k . (18)

The rate of change of H2 given by Eq. (18) will be compared with that of QW,

d(QW )

dt
= Q

dW

dt
+ W

dQ

dt
, (19)

where W and Q can be expressed in terms of the Fourier components of B ,

〈B, B〉 ≡ W ≡
ˆ

V

B2d3x = V
∑

k

Bk · B∗
k, (20)

〈A, A〉 ≡ Q ≡
ˆ

V

A2d3x = V
∑

k 6=0

Bk · B∗
k

k2
. (21)
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To calculate the rate of change of Q and W, we need to know dBk/dt · B∗
k, which can be

calculated from Faraday’s law dBk/dt = −ick × Ek and Ohm’s law as

dBk

dt
· B∗

k = −icηk × jk · B∗
k + ik × (v × B)k · B∗

k . (22)

The second term on the right-hand-side of Eq. (22) can be expressed in terms of the current

ik × (v × B)k · B∗
k =

4π

c

∑

l

Bl × j−k · vk−l , (23)

which is associated with the variation of kinetic energy due to the Lorentz force. To see

this, we observe that the energy conservation law in the low-β limit takes the form

∂

∂t

(

ρ
v2

2

)

+ ∇ ·
(

ρv
v2

2

)

− v

c
· (j × B) = 0 . (24)

Integrating over the entire volume gives

∂

∂t

(
ˆ

V

ρ
v2

2
d3x

)

=

ˆ

V

v

c
·(j × B) d3x = V

∑

k,l

1

c
vk−l ·j−k ×Bl = − V

4π

∑

k

ik×(v×B)k ·B∗
k ,

(25)

which indicates that the work done by the Lorentz force is converted into the kinetic energy

of the plasma. Since we have assumed that the kinetic energy is much smaller than the

magnetic energy,
´

V
ρv2dx/2 ≪

´

V
B2d3x/8π, it is clear that work due to the Lorentz force

contributes little to the time rate of change of magnetic energy, i.e.,

i
∑

k

k × (v × B)k · B∗
k ≪

∑

k

dBk

dt
· B∗

k. (26)

It follows that variation of the magnetic energy is mainly due to the finite resistivity,

dW

dt
=

ˆ

V

2B · ∂B

∂t
d3x = 2V

∑

k

Bk · dB∗
k/dt = −2V c2η

4π

∑

k

k2Bk · B∗
k . (27)

We further assume that the condition that kinetic energy be much smaller than magnetic

energy holds at large scales. Thus, when each term in Eq. (26) is weighted by 1/k2, the total

contribution from the Lorentz force term is still small, i.e.,

i
∑

k

1

k2
k × (v × B)k · B∗

k ≪
∑

k

1

k2

dBk

dt
· B∗

k. (28)

Under these conditions, the rate of change of Q can be expressed in terms of Bk · B∗
k as

dQ

dt
=

ˆ

V

2A · ∂A

∂t
d3x = 2V

∑

k 6=0

Bk · dB∗
k/dt

k2
= −2V c2η

4π

∑

k 6=0

Bk · B∗
k . (29)

7



We will give a more detailed discussion of the validity of Eqs. (5), (27) and (29) near the

end of the article. Equations (21), (20), (27), and (29) can be assembled together to give

d(QW )

dt
= −2c2V 2η

4π





B2
0

∑

k 6=0

B2
k +





∑

k 6=0

B2
k





2

+
∑

k 6=0

B2
k

k2

∑

k 6=0

B2
kk2







= −2c2V 2η

4π



B2
0

∑

k 6=0

B2
k + 2

∑

k 6=0

B4
k +

1

2

k 6=l
∑

k,l 6=0

(

2 +
l2

k2
+

k2

l2

)

B2
kB2

l





≤ −2c2V 2η

4π



B2
0

∑

k 6=0

B2
k + 2

∑

k 6=0

B4
k +

k 6=l
∑

k,l 6=0

(

| l |
| k | +

| k |
| l |

)

B2
kB2

l



 , (30)

where the following inequality has been used
(

2 +
l2

k2
+

k2

l2

)

=

(

| l |
| k | +

| k |
| l |

)2

≥ 2

(

| l |
| k | +

| k |
| l |

)

. (31)

On the other hand, from Eq. (18),

− dH2

dt
≤ V 2c2η

π

∑

k

2 | BkR || BkI || k |
∑

k 6=0

2 | BkR || BkI | / | k |

≤ V 2c2η

π

∑

k

B2
k | k |

∑

k 6=0

B2
k/ | k |= V 2c2η

π





∑

k 6=0

B4
k +

1

2

k 6=l
∑

k,l 6=0

(

| l |
| k | +

| k |
| l |

)

B2
kB2

l



 . (32)

Combining inequalities (30) and (32), we have inequality (8). Further, we see that equality

in Eq. (8) is reached when the following four conditions are satisfied (i) B0 = 0, (ii) BkR,

BkI , and k are perpendicular to each other, (iii) |BkR| = |BkI |, and (iv) all of the non-

zero components will have the same | k |,i.e., | k |= α. Fourier decomposition of Eq. (1)

verifies that these four conditions are necessary and sufficient for it to be satisfied. This

completes the first proof that d (QW − H2) /dt ≤ 0, with equality upheld only for a plasma

in a Woltjer-Taylor state.

We now demonstrate the second proof [36]. This proof does not require Fourier decom-

position and is more elegant. The result for dW/dt given in Eq. (27) can also be written

without using Fourier components as,

dW

dt
= −8πη

ˆ

V

j · jd3x = −8πη 〈j, j〉 . (33)

Similarly, in the Coulomb gauge, using the fact the electromagnetic field vanishes on the

boundary, the result for dQ/dt given in Eq. (29) can be written as

dQ

dt
= −c2η

2π

ˆ

V

B · Bd3x = −c2η

2π
〈B, B〉 . (34)
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Then,

d

dt

(

QW − H2
)

= 2η

[

2c 〈A, B〉 〈j, B〉 − c2

4π
〈B, B〉2 − 4π 〈A, A〉 〈j, j〉

]

= 2η



−
(

c√
4π

〈B, B〉 − 〈A, B〉 〈j, B〉
〈B, B〉

√
4π

)2

− 4π

(

〈A, A〉 〈j, j〉 − 〈A, B〉2 〈j, B〉2

〈B, B〉2

)



 .

(35)

By the Cauchy-Schwartz inequality, 〈A, A〉 〈B, B〉 ≥ 〈A, B〉2 and 〈j, j〉 〈B, B〉 ≥ 〈j, B〉2,

implying that the last term in Eq. (35) is negative, i.e.,

− 〈A, A〉 〈j, j〉 +
〈A, B〉2 〈j, B〉2

〈B, B〉2
≤ 0 . (36)

Thus, Eqs. (35) and (36) verify inequality (8), and equality holds if and only if B = αA for

constant α. This completes the second proof of inequality (8), with equality upheld only if

the plasma is in a Woltjer-Taylor state.

In the derivation of Eqs. (5), (27) and (29), we have assumed that the variation of magnetic

energy due to the Lorentz force is small compared with that due to the resistivity. This

approximation has essentially been adopted by Taylor and other researchers [10, 15, 16, 27]

when Eq. (5) is used. Here we discuss the validity of this assumption. First of all, it is

reasonable to argue that the Lorentz force term ik× (v ×B)k ·B∗
k = 4π

c

∑

l Bl ×j−k ·vk−l in

Eq. (22) is nonlinear and responsible for turbulence generation, and should therefore not be

ignored. On the other hand, if we consider the kinetic energy equation [Eq. (25)] in the low β

limit, it is clear that the variation of magnetic energy due to the Lorentz force is completely

converted into kinetic energy. This is of course not surprising. If we assume that the kinetic

energy in the system is smaller than the magnetic energy for all time, it follows that the

work done by the Lorentz force (i.e., the energy exchange between the magnetic and kinetic

energies) must be smaller than the magnetic energy itself. Thus, any substantial magnetic

energy variation has to be caused by resistivity. We have further assumed that this fact is

true at large scales. We emphasize that this assumption does not imply that the nonlinearity

of the Lorentz force is not as important as other nonlinearities in the relaxation process (such

as the convection term v · ∇v). Rather, it simply means that the total magnetic energy

dissipation is mainly due to resistivity. This assumption is actually independent from other

assumptions that one may wish to adopt in developing a theory of plasma relaxation and

we believe that it is also a crucial component of Taylor’s theory [e.g., Eq. (5)]. This further
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corroborates the view that the Woltjer-Taylor state will not be that to which a plasma

relaxes at high β or when the kinetic energy is comparable to the magnetic energy [23–26].

It is also necessary to point out that as a theoretical model certain simplifications have

been adopted in order to make progress. For example, as in previous analyses carried out

by Taylor [15, 16], Schnack [27], and Bhattacharjee [17, 18, 20–22], we have assumed that

resistivity is constant, even though the resistivity in laboratory discharge experiments can

vary significantly between the center and edge of the plasma. Nevertheless, we believe the

theoretical understanding enabled by these simplifications does provide valuable insights into

the complex plasma relaxation process. To bring our understanding to the next level and

include more realistic effects (e.g., inhomogeneous resistivity, pressure and density gradients)

further investigations are certainly necessary, probably with new and refined theoretical tools

and methods.

To summarize, in our new theory of plasma relaxation, the relaxed Woltjer-Taylor state is

reached as the non-negative quantity QW −H2 evolves towards zero. In contrast to Taylor’s

theory, which is only valid for relaxation dominated by short wavelength fluctuations, our

theory is valid for an arbitrary perturbation spectrum. The new theory can be tested

by experiment and numerical simulation. The predictions of our theory, specifically the

inequality (8) and the variation of H2 and QW (as illustrated in Fig. 1), can be verified

using magnetic fluctuation spectrum data. Testing the validity of this new relaxation theory

is one of the scientific objectives of the Keda Toroidal eXperiment (KTX), a RFP device

that is currently being constructed at the University of Science and Technology of China.
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