
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Steady-State Many-Body Entanglement of Hot Reactive
Fermions

Michael Foss-Feig, Andrew J. Daley, James K. Thompson, and Ana Maria Rey
Phys. Rev. Lett. 109, 230501 — Published  4 December 2012

DOI: 10.1103/PhysRevLett.109.230501

http://dx.doi.org/10.1103/PhysRevLett.109.230501


Steady-state many-body entanglement of hot reactive fermions

Michael Foss-Feig,1 Andrew J. Daley,2 James K. Thompson,1 and Ana Maria Rey1

1 JILA, NIST, and Department of Physics, University of Colorado, Boulder, CO 80309-0440, USA
2 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA

Entanglement is typically created via systematic intervention in the time evolution of an initially
unentangled state, which can be achieved by coherent control, carefully tailored non-demolition
measurements, or dissipation in the presence of properly engineered reservoirs. In this paper we
show that two-component Fermi gases at ∼ µK temperatures naturally evolve, in the presence of
reactive two-body collisions, into states with highly entangled (Dicke-type) spin wavefunctions. The
entanglement is a steady-state property that emerges—without any intervention—from uncorrelated
initial states, and could be used to improve the accuracy of spectroscopy in experiments with
fermionic alkaline earth atoms or fermionic groundstate molecules.

Many-body entangled states are known to be useful for
quantum computing, quantum teleportation and cryp-
tography protocols [1], and precision metrology [2]. With
these applications as motivation, the physics community
has invested tremendous effort in preparing, stabilizing,
and measuring entangled systems. Much of this effort has
relied on coherent (Hamiltonian) dynamics to arrive at
entangled states starting from less exotic states with only
classical correlations. However, these approaches typi-
cally suffer from the necessity to either carefully engineer
interactions between particles or to prepare extremely
pure and specific initial states (or both). A bottom up
implementation of coherent control has yielded entangled
states of up to 14 atoms with relatively high fidelity [3] (in
ion experiments), and a top down approach has yielded
weakly entangled states in a Bose Einstein condensate
of ∼ 104 neutral atoms [4]. A promising alternative to
coherent control is the collective-nondemolition measure-
ment of some observable with a finite variance in an ini-
tially classical state. Such approaches have been used
to generate entanglement (in the form of spin squeezing)
amongst as many as 106 cold thermal atoms [5]. How-
ever, collective and coherence preserving measurements
are generically difficult to make, and the induced non-
classical correlations are typically weak.

In this paper, we show that two-component non-
degenerate fermionic gases can be driven by reactive s-
wave two-body collisions into steady-state spin configura-
tions that, for a given value of the saturated particle num-
ber, are pure and highly entangled. The entanglement
comes in the form of Dicke states [6], in which the spin-
wavefunction is fully symmetric under interchange of the
particles (with the burden of fermionic antisymmetry be-
ing taken up entirely by the motional degrees of freedom).
Such states have been sought in experiments with ultra-
cold bosons for use in Heisenberg-limited phase measure-
ments [7], however these approaches typically suffer from
the necessity to reach extremely cold temperatures (for
the validity of a two-mode approximation in a double-
well potential) or to employ Feshbach resonances [8] (to
enhance spin exchange interactions for two-component
Bose Einstein condensates). The only requirements to

achieve such entanglement in the steady-state of lossy
non-degenerate fermions are to have an SU(2) invariant
single-particle Hamiltonian (in the pseudo-spin degrees
of freedom) and a significant separation of timescales be-
tween s-wave and p-wave collisions, with the second re-
quirement typically being satisfied for temperatures in or
below the µK range.

Because the Dicke type of spin-entanglement per-
sists in the steady-state of dissipative dynamics, we do
not rely on the highly controlled coherent manipula-
tion that is typical of spin-squeezing experiments with
bosons. Driven, dissipative preparation of nontrivial
steady-states has been considered before in the context of
many-body atomic systems [9–11], and has been achieved
recently in [12, 13]. In contrast to these examples, the
mechanism described here is intrinsic and generic to a
variety of interesting and experimentally relevant sys-
tems, such as fermionic alkaline-earth atoms (AEAs) and
fermionic dipolar molecules, and does not require any
special engineering of the system-reservoir coupling. Af-
ter presenting calculations in support of our claims, we
discuss the possible realization of such steady states in
an experiment. In particular, we will propose a simple
proof of principle experiment in which the steady-state
entanglement can be revealed via Ramsey spectroscopy
of the 1S0 to 3P0 clock transition of an AEA [14, 15]. In
this case, we will see that the interferometric precision
stays relatively constant even as most of the particles
are lost (all but ∼

√
N in the long time limit), signaling

the development of quantum correlations and the pur-
suant violation of the standard quantum-limit. The to-
tal loss of precision (due to particle loss) exactly cancels
the gain due to the growth of entanglement. However,
a persistent precision under loss of particles can provide
enhanced spectroscopic accuracy. In particular, interro-
gation of an atomic clock with fewer atoms will reduce
p−wave elastic[16] and inelastic[17] collisions, which are a
leading source of inaccuracy for states immune to s-wave
interactions [18] (e.g. spin-polarized fermions).

Our description of spin- 12 fermions with two-body re-
active collisions relies on the formalism detailed in Refs.
[19–21], generalized for fermions, where we assume the
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temperature to be sufficiently low that losses are domi-
nantly in the s-wave channel. As in Ref. [19], large ki-
netic energy of fermions in the outgoing channels (which
for reactive molecules can correspond to temperatures
in the 10K range) guarantees they will be rapidly lost
from any typical atom trap, justifying a Born Markov
approximation. Given a density matrix % for the sys-
tem (fermions, Hilbert space S ) plus reservoir (outgoing
channels of the inelastic collisions, Hilbert space R), the
Born-Markov approximation leads to a master equation
for the system reduced density matrix ρ = TrR[%] [20]:

~ρ̇ = i[ρ,H]− κ
2

∫
d3r

(
J †J ρ+ ρJ †J − 2J ρJ †

)
. (1)

The system Hamiltonian H = H0 + g
∫
d3rJ †J is com-

posed of an unspecified single-particle term H0 and an
interaction term with coupling constant g = 4π~2aR/m,
where m is the particle mass and a = aR + iaI (aI < 0)
is the complex s-wave scattering length. The jump oper-
ators are defined by J (r) = ψ↑(r)ψ↓(r) (their explicit r
dependence is suppressed in the integrals above), where
ψσ(r) annihilates a fermion located at position r in in-
ternal state σ ∈ {↑, ↓}, and κ = −4π~2aI/m. Assum-
ing without loss of generality that the initial number of
particles N is even, the relevant system Hilbert space
can be written as a direct sum over spaces with well de-
fined particle number, S = SN ⊕ SN−2 ⊕ · · · ⊕ S 0,
between which coherence never develops. Hence, the
density matrix can be decomposed into a sum of den-
sity matrices in each particle-number sector, any one of
which we label by ρn once normalized. Furthermore,
any Hilbert space S n can be decomposed into a di-
rect product between motional (m) and spin (s) degrees
of freedom, S n = S n

m ⊗ S n
s , and we can define a re-

duced spin density matrix by ρns = TrSm
[ρn]. For what

follows, it will be useful to define a fidelity in a given
Dicke state of the spin degrees of freedom of n particles,
|S = n/2, Sz〉, given by the population of ρns in the Dicke
state FS,Sz ≡ 〈S, Sz|ρns |S, Sz〉. Here S and Sz are quan-
tum numbers for the total spin and its projection along
the z-axis, respectively.

Two particles. To make the physics clear in a simple
context, we begin by considering two fermions in a single
double well potential (which could be formed in an opti-
cal super-lattice [22, 23]). We consider a single wavefunc-
tion ϕα(r) in each well (α ∈ {L,R}), denote the creation
operator for a fermion in spin state σ and wavefunction
ϕα by ψ†σα, and choose an initial state ψ†↑Lψ

†
↓R|vac〉 with-

out spin correlations. Within a tight binding model for
these two wavefunctions, the Hamiltonian is

H = −J
∑
σ

(ψ†σLψσR + ψ†σRψσL) + U
∑

α=L,R

J †αJα, (2)

where J is the inter-well hopping, Jα = ψ↑αψ↓α are

the jump operators [Eq. (1)], U = g
∫
d3r|ϕα(r)|4 is

+
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FIG. 1: (Color online). The fidelity of the spin density ma-
trix (solid red line, after post-selection for a non-vacant well)
with respect to the Sz = 0 Dicke state approaches one (black
dotted line) at times long compared to γ−1. The oscillations
are due to inter-well hopping.

the onsite interaction energy, and γ = κ
∫
d3r|ϕα(r)|4

is the onsite loss rate. The initial state can be decom-
posed into an evenly weighted superposition of triplet
and singlet [(ψ†↑Lψ

†
↓R ± ψ

†
↓Lψ

†
↑R)|vac〉, with plus for the

triplet], and the spin wave function of the triplet is the
entangled Dicke state |1, 0〉. The triplet, |t〉, having a
spin wavefunction that is symmetric under exchange, has
an orbital wavefunction that is antisymmetric under ex-
change, and therefore it is “dark” to s-wave losses (i.e.
JL|t〉 = JR|t〉 = 0). It also happens to be an eigenstate
of H, and so it is stationary under propagation of the
master equation. On the other hand, there are no dark
eigenstates in the singlet sector, and as a result ρ2s is
pure at long times and satisfies F1,0 = 1. In other words
the steady state of our system, when restricted to the
subspace with two particles, is the entangled Dicke state
|1, 0〉. There is also a 50% probability of obtaining the
vacuum, and hence in an array of double wells the entan-
glement fidelity is only unity after post-selection of the
non-vacant wells. In this simple example we see an im-
portant general feature of the physics we will discuss, that
even purely local (intra-well) dissipation, when coexist-
ing with Hamiltonian dynamics that delocalizes the par-
ticles, generates non-local (inter-well) spin correlations in
the steady state.

Many particles. Solving Eq. (1) for initial states
with N > 2 initial particles quickly becomes impossi-
ble, but strong statements can nevertheless be made re-
garding the steady state. It is crucial to observe that
the jump operators only remove spin singlets from the
system, which follows from Fermi statistics combined
with the even exchange symmetry of the spatial part
of any two-particle wave function susceptible to s-wave
scattering. Intuitively, this suggests that losses do not
decrease the expectation value of the total spin, S =
1
2

∫
d3rψ†σ(r)τσσ′ψσ′(r) (τ being a vector whose compo-

nents are the Pauli matrices). Mathematically, we say
that d

dt 〈S · S〉 = Tr[ρS · S] = 0, which can be verified
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FIG. 2: (Color online). Particle number [N(t), solid red line]
and average Dicke state fidelity [F(t), dashed blue line] for an
8-site Hubbard chain. For N(t), the shaded region is an esti-
mate of the statistical error from sampling of a finite number
of trajectories. The black dotted line is the analytic bound in
Eq. (3).

in the case when H is SU(2) invariant by checking that
[S ·S,J (r)] = 0. A stronger consequence of the commu-
tation of all J (r) with S · S is that population in any
sector of total spin, PS , is also conserved. Because any
state with well defined total spin S must have 〈N̂〉 ≥ 2S
particles (where N̂ =

∫
d3rψ†σψσ is the total number op-

erator), an immediate consequence is that the loss of par-
ticles can only yield the vacuum deterministically at long
times if the initial state is a total spin-singlet. For an un-
correlated spin state, such as a non-degenerate thermal
distribution of N fermions in a balanced incoherent mix-
ture of ↑ and ↓, it can be shown that [24]

N(t) ≡ Tr[ρN̂ ] ≥
∑
S

2SPS =
π1/2Γ

[N
2 + 1

]
Γ[N2 + 1

2 ]
− 1, (3)

which places a lower bound on the steady-state expecta-
tion value for the number of particles N(t). This expec-
tation value determines the particle number in a typical
steady-state configuration, and is achieved (on average)
without any post selection, but variations of the steady-
state particle number will occur from shot to shot. Stir-
ling’s approximation for large N yields an approximate
bound N(t) &

√
πN/2. For the chosen restriction on

the initial state, the validity of Eq. (3) depends only on
the SU(2) invariance of H, and not on its precise form.
Whether the bound (3) is saturated in the steady-state,
however, is an important and delicate issue. The bound
is only saturated when, in every sector of total spin S,
there are exactly NS = 2S particles. Because the lat-
ter condition is only satisfied by Dicke states, saturation
of Eq. (3) guarantees that all of the ρns describe pure
Dicke states in the steady-state. Demonstrating that this
bound is saturated in certain experimentally relevant sit-
uations, namely a 1D harmonic trap and a 1D Hubbard
chain, is a central technical result of this paper.

Saturation of the bound in Eq. (3) is guaranteed if,

for any fixed value of n and Sz, the pure density matrix
|n/2, Sz〉〈n/2, Sz| is the unique steady-state reduced spin
density matrix. This uniqueness, in turn, is equivalent to
requiring that any dark-state with quantum numbers n
and Sz has a well defined spin wavefunction given by the
Dicke state |n/2, Sz〉. In the supplement we prove this
to be true for a 1D harmonic oscillator potential, and
we have verified it numerically for a 1D Hubbard chain
(see below). It is worth noting at this point that, while
the equivalence of dark-states with the Dicke states is
intuitive, there are natural Hamiltonians for which this
intuition is incorrect. In particular, all Hamiltonians in
D > 1 that are separable in cartesian coordinates do have
dark-states with FS,Sz < 1.

In order to verify the above statements numerically,
we have performed quantum trajectories simulations for
an 8-site Hubbard chain with open boundary conditions,
an initial filling of one particle per site, and zero polar-
ization (N = 8 and Sz = 0). In Fig. 2 we show the
calculated particle number and average Dicke state fi-
delity, F(t) = 1

4

∑4
S=1 FS,0, and one can see that the

former saturates the bound Eq. (3) while the latter ap-
proach unity at long times. For this calculation we solve
for O(104) trajectories with no approximation.
Experimental realization. Dicke states are known to

be useful for a variety of quantum information proto-
cols, including but not limited to quantum secret shar-
ing [25], teleportation [26], and sub shot-noise limited
precision spectroscopy [7]. Here we give a brief descrip-
tion of how the proposed Dicke state preparation could
be used in precision spectroscopy of the clock transition
in alkaline-earth atoms. For a fixed interrogation time,
spectroscopy on N uncorrelated atoms has a phase sen-
sitivity δϕ & 1/

√
N , a bound known as the standard

quantum limit (SQL). On the other hand, spectroscopy
on a Dicke state of N particles with spin Sz = 0 has the
potential to approach the Heisenberg limit (HL) of phase
sensitivity, δϕ ∼ 1/N [7, 27]. It is important to realize
that the production of Dicke states with

√
N fermions via

two-particle loss does not actually enhance the phase sen-
sitivity relative to the initial state with N fermions; the
enhancement in phase sensitivity between the SQL and
HL exactly compensates the reduction of particle num-
ber. However, the reduced particle number in the Dicke
state and darkness to real s-wave interactions (which if
present generate clock shifts), can render the accuracy
of the final Dicke state superior to that of the initial N
fermion uncorrelated state.

Rather than allowing losses amongst a macroscopic
sample of atoms, for which the approach to the steady
state could be quite slow, we imagine an array of T 1D
tubes created by a 2D optical lattice. Although there will
be variations in the atom number from tube to tube, for
simplicity we take each tube to have exactly N fermionic
AEAs in the 1S0 electronic state and Iz = I nuclear-spin
state, denoted |1S0, I〉. For the analysis in this paper to
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FIG. 3: (Color online). (a) An array of T 1D tubes, each
having Dj atoms in a Dicke state. (b) Bloch sphere represen-
tation of a Dicke state in a particular tube.

be valid, the temperature should be small compared to
the vibrational level-spacing in the transverse tube direc-
tion, and also low enough that only the harmonic part
of the trapping potential along the tube axis is sampled
by the atoms. A π/2-pulse on the spin degrees of free-
dom [|1S0, I〉 → 1√

2
(|1S0, I〉 + |1S0, I − 1〉)], followed by

single particle dephasing, generates a statistical mixture
of the two spin states (Iz = I and Iz = I − 1). Losses
can be initiated by applying a π-pulse on the clock tran-
sition (|1S0, I

z〉 → |3P0, I
z〉). We estimate that this π-

pulse can be achieved on the . 100µs timescale with-
out exciting transverse excitations in the tubes (which,
if present, violate the assumption of a 1D geometry and
destroy the uniqueness of the steady-state). Thus the
transfer into 3P0 is sufficiently fast that it can be con-
sidered instantaneous on the initial timescale of reactive
collisions—which, based on universal considerations for a
Lieb-Liniger gas, we estimate to be & 1ms for experimen-
tally relevant 1D densities [19]—such that it suddenly
initiates strong 2-body s-wave losses.

The steady state of the system is a statistical mixture
of Dicke states in the different tubes, each having some
value of Dj particles (centered around D0 ≈

√
N ) and

spin projection Szj (centered around zero). Spin selective

transfer of |3P0, I − 1〉 into |1S0, I〉 maps the spin degree
of freedom onto the clock states, leaving a spin-polarized
sample, and Ramsey spectroscopy on the clock transi-
tion can then be performed [27]. Despite the fluctuation
of both Dj and Szj from one tube to another, accurate
knowledge of the initial value of total Sz =

∑
j S

z
j guar-

antees that the minimum resolvable rotation angle in a
Ramsey experiment scales as

δϕmin ∼ 1/D0

√
T . (4)

This result is derived in the supplement, and can be inter-
preted as the existence of Heisenberg scaling (∼ 1/D0)
of phase-sensitivity for each tube, which is then com-
bined between tubes in a statistically independent man-
ner (hence the 1/

√
T ). As mentioned above, in order

to utilize this phase sensitivity the initial value of Sz

must be accurately known. Because Sz is conserved by
the losses, it can be measured before transfer to the 3P0

state, and hence the measurement does not need to pre-
serve any inter-particle correlations (since these develop
during the losses). Accurate measurements of this type
and precision for ∼ 100 atoms in an optical cavity have
recently been demonstrated [28].

The primary limitations on the final state fidelity
achievable in experiments are likely to be a combination
of finite p-wave losses (which the Dicke states are not
dark to) and magnetic field gradients. At sub µK tem-
peratures, the s-wave losses in a spin mixture of 87Sr are
expected to be about an order of magnitude faster than
the p-wave losses [18]. For reactive molecules (or 171Yb),
where the inelastic collisions are expected to more fully
saturate the unitarity bound [17], this separation of rates
will most likely be even larger. Magnetic field gradients
couple sectors of different total S, all of which are sepa-
rated from the Dicke manifold by a gap for finite systems
and nonzero aR, so in principle their adverse effects can
be suppressed to first order [29]. Furthermore, if the two
components of the Fermi gas are two nuclear spin states
of an AEA, they will be extremely insensitive to mag-
netic field gradients: We estimate that typical gradients
(1mG/cm) will cause spin dephasing on a 100s timescale
for a linear system size of 100µm. This timescale is sev-
eral orders of magnitude longer than the initial two-body
loss rate in tightly confined 1D tubes, which we estimate
to be on the order of 10ms for 87Sr (assuming a 50ER

2D lattice and scaling the density dependent loss rate
from Ref. [18]), and even faster for 171Yb [17]. A more
quantitative analysis of the effects of both magnetic field
imperfections and finite p-wave losses requires numerics
beyond the scope of this work, and is left for future study.
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and P. Zoller, Nat. Phys. 4, 878 (2008).

[12] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz,
M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and
R. Blatt, Nature 470, 486 (2011).

[13] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski,
J. M. Petersen, J. I. Cirac, and E. S. Polzik, Phys. Rev.
Lett. 107, 080503 (2011).

[14] M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Fore-
man, S. Blatt, T. Ido, and J. Ye, Science 314, 1430
(2006).

[15] M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin,
A. M. Rey, and J. Ye, Science 331, 1043 (2011).

[16] N. D. Lemke, J. von Stecher, J. A. Sherman, A. M. Rey,
C. W. Oates, and A. D. Ludlow, Phys. Rev. Lett. 107,
103902 (2011).

[17] A. D. Ludlow, N. D. Lemke, J. A. Sherman, C. W. Oates,
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