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The number of four-body states known to behave universally is small. This work adds a new
class of four-body states to this relatively short list. We predict the existence of a universal four-
body bound state for heavy-light mixtures consisting of three identical heavy fermions and a fourth
distinguishable lighter particle with mass ratio x 2 9.5 and short-range interspecies interaction
characterized by a positive s-wave scattering length. The structural properties of these universal
states are discussed and finite-range effects are analyzed. The bound states can be experimentally
realized and probed utilizing ultracold atom mixtures.

PACS numbers:

Universality plays an important role in nearly all ar-
eas of physics and allows one to connect phenomena
governed by vastly different energy and length scales.
A simple class of universal states consists of two-body
bound states whose size is much larger than any other
length scale in the problem. Prominent examples in-
clude diatomic Feshbach molecules [1], which are nowa-
days created routinely in cold atom laboratories around
the world, and di-mesons such as the charmonium res-
onance near 3870 MeV [2]. The former have a binding
energy of order 10710 eV while the latter have a binding
energy of order 0.5 x 10% eV. Yet, once expressed in terms
of the two-body s-wave scattering length ag, the binding
energy can be written, to a very good approximation, as
EZR ~ —h2/(2ua?) in both cases; here, u is the reduced
mass of the constituents.

Although the concept of universality has been ex-
tended successfully to three- and higher-body systems [3—
22|, the list of examples, particularly for few-body sys-
tems consisting of more than n = 3 constituents, is
still comparatively small. Most notably, three- and four-
body physics has been investigated in the context of Efi-
mov physics. The three-body Efimov effect [5], i.e., the
existence of infinitely many geometrically spaced three-
body bound states, can occur when the s-wave scattering
length is much larger than the range of the two-body po-
tential. This at first sight purely academic scenario can
be realized in cold atom experiments by tuning the s-
wave scattering length in the vicinity of a Fano-Feshbach
resonance through application of an external magnetic
or optical field [1, 12]. In the four-body sector, Efimov
physics can occur via two different routes, as a true four-
body Efimov effect [22] or as four-body states universally
tied to three-body Efimov states [6, 8, 9]. In either case,
the description of the Efimov scenario requires two pa-
rameters, the s-wave scattering length and a higher-body
parameter [5].

This Letter reports on a new class of universal four-
body states, predicted to exist—just as Efimov states—
in three spatial dimensions that are fully determined by
the two-body s-wave scattering length as. As such, they

are fundamentally different from Efimov states, which de-
pend on two parameters. The universal four-body bound
states exist in heavy-light mixtures that consist of three
identical heavy fermions and a fourth distinguishable par-
ticle, which interacts with the heavy particles through a
short-range two-body potential with positive s-wave scat-
tering length as. We find that the four-body bound states
exist for mass ratios s larger than k.4 =~ 9.5. For effec-
tively two- or one-dimensional confinement, the universal
tetramers are expected to be more strongly bound than
in three spatial dimensions. In fact, universal tetramers
under quasi-two-dimensional confinement have very re-
cently been predicted to exist for x = 5 [21]. Just as the
three-body bound states for positive as; are connected
to Efimov states (which exist, in the zero-range limit,
for k > 13.607) [17-20, 23, 24], the universal four-body
states predicted here are expected to be connected to
four-body Efimov states, which have been predicted to
exist for 13.384 < k < 13.607 [22]. The different classes of
states can be described in a unified framework within the
hyperspherical coordinate or effective field theory formu-
lations. We analyze the dependence of the binding energy
on the range of the underlying two-body interaction po-
tential and interpret our findings employing hyperspher-
ical coordinates. The universal four-body bound states
discussed here are not only interesting from the few-body
point of view but also have important implications for the
many-body phase diagram of heavy-light mixtures [25-
28] that can be realized with cold atoms [29-32], elec-
trons [33] and quarks.

Our starting point is the non-relativistic Hamiltonian
H in free space for n— 1 identical heavy fermions of mass
M and a single distinguishable light particle of mass m,

n—1 —h2

—hQ n—1
H = Wv% =+ %V%ﬂ + Z ‘/tb('rjn)v (1)
Jj=1

where Vip(rjn) = —Voexp [—r3,/(2r3)]. Here, 7 de-
notes the position vector of the jth particle and r;; the
interparticle distance, rj; = |F; — 7x|. The interaction
between the heavy and light particles is described by the
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FIG. 1: (Color online) Scaled energies as a function of
ro/as. The dashed line shows Fa/|EZ%|. The symbols show
E3/|E$®| for k = 8.25 — 10.5 (top to bottom), in steps of
0.25; F3 is determined by the stochastic variational approach.
Dotted lines show three-parameter fits. Inset: Symbols show
EZR/|EZR| as a function of k. The solid line shows a four-
parameter fit.

Gaussian potential Vi, with depth V and range . We
are interested in the regime where the two-body free-
space s-wave scattering length a; is positive and rg < as.
Throughout, we express lengths in units of a; and ener-
gies in units of |EZR|, where EZR denotes the relative
s-wave energy of the two-body system with zero-range
interactions (realized when rq — 0), EZR® = —h2/(2ua?)
with o = Mm/(M + m). For a given r9/as, we adjust
the depth Vj such that the two-body potential supports
a single s-wave bound state.

To determine the eigenstates and eigenenergies of H,
we expand the relative wave function in terms of explic-
itly correlated Gaussians [34]. To construct basis func-
tions with good total relative angular momentum L, pro-
jection quantum number My, (M = 0), and parity II,
we employ the global vector approach [35, 36]. The pa-
rameters of the explicitly correlated Gaussian basis func-
tions are optimized semi-stochastically. According to the
generalized Ritz variational principle [34], the approach
yields variational upper bounds for the eigenenergies of
the ground and excited states.

We first consider the n = 3 system with L = 1~
symmetry. Employing zero-range s-wave interactions,
a universal trimer state has been predicted to exist for
Keg 2 8.173 [20]. A second universal trimer state has

~

been predicted to be supported for 7}, 2 12.917 [20].
Symbols in Fig. 1 show the relative energy FEs of the
energetically lowest-lying three-body state with 1~ sym-
metry, calculated by the stochastic variational approach
and scaled by |E4R|, as a function of 7g/as for various
mass ratios £ (k = M/m). The trimer energy becomes
more negative with increasing x for a fixed r¢/as. More-
over, the trimer energies approach the zero-range limit
from below, with the range dependence becoming larger
with increasing . For comparison, the dashed line shows
the quantity Ey/|E3R|; here, F5 denotes the relative two-

body energy. Due to the scaling chosen, the dimer energy
is independent of the mass ratio. The dependence of the
dimer energy on rg is smaller than that of the trimer
energy. Dotted lines in Fig. 1 show three-parameter fits
to the three-body energies with rg/as < 0.01 [37]. The
symbols in the inset of Fig. 1 show the extrapolated zero-
range energies E4R | scaled by |E4R|, as a function of the
mass ratio k. The solid line shows a fit of the quan-
tity EZR/|E4R| to a fourth-order polynomial. Our fit
predicts that the trimer becomes unbound with respect
to the dimer for k.3 =~ 8.20, which compares favorably
with the k.3 value of 8.173 determined for zero-range
interactions [20]. This good agreement demonstrates
that the stochastic variational approach employed in this
work is capable of accurately describing universal few-
body bound states. Non-universal trimer states can, at
least in principle, exist for k 2 8.6, corresponding to a
scaled hyperangular eigenvalue so ynit < 1 [17, 27, 38, 39].
Whether or not non-universal states exist depends on
the details of the underlying two-body potential. For
the Gaussian model potential considered here, it was
shown [40, 41] that non-universal three-body physics
comes into play for mass ratios larger than those con-
sidered here.

We now discuss the energetics of the four-body system.
For zero-range interactions with 1/as = 0, the Sounit
value is greater than 1 for k < 10 [40-42], suggesting that
four-body bound states are, provided they exist, univer-
sal. Circles and triangles in Fig. 2 show the quantity
E,/|E5R| for, respectively, the energetically lowest-lying
and second lowest-lying states with L = 11 symmetry
for (a) kK = 9.5, (b) k = 9.75 and (¢) k = 10 as a func-
tion of r9/as. The four-body energies are obtained by
the stochastic variational approach. For comparison, the
dashed lines in Fig. 2 show the quantity Fy/|E$R|, and
the crosses and solid lines show the quantity E3/|E%R|.
The four-body ground state energy lies below the three-
body energy for small r9/as. For k = 9.5, 9.75 and 10,
the four-body ground state energy “dives down” around
ro/as = 0.015, 0.011 and 0.008, respectively. In this
regime, the four-body state acquires non-universal char-
acteristics. For slightly larger ro/as, the energy of the
first excited state drops below the energy of the trimer
and then “traces” the three-body energy [43]. We re-
fer to the feature where the four-body system acquires
a new bound state as resonance-like feature. The ex-
istence and characteristics of the resonance-like feature
depend on the details of the two-body interaction model
employed. Away from the resonance-like feature, the
four-body energy shows a very similar range dependence
as the three-body energy, suggesting that the four-body
energy is roughly a constant multiple of the three-body
energy. Moreover, it is clear from Fig. 2 that F3/FE, in-
creases with increasing mass ratio [44]. A precise extrap-
olation of the four-body energies to the zero-range limit is
challenging since numerical issues limit our calculations
to ro/as 2, 0.004 and the resonance-like feature prevents
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us to perform unambiguous fits. We estimate that the



FIG. 2: (Color online) Scaled energies as a function of ro/as
for (a) k = 9.5, (b) kK = 9.75, and (c) k = 10. The dashed
lines show E3/|E4%| while the crosses (stochastic variational
energies) and solid lines (fit) show F3/|E3%| (these energies
are also shown in Fig. 1). Circles and triangles show E, /| E5%|
for the energetically lowest-lying and second lowest-lying four-
body states, respectively. Dotted lines serve as a guide to the
eye.

four-body system becomes bound around k.4 = 9.5.

To provide further evidence that the four-body states
are—away from the resonance-like feature—universal, we
analyze the hyperradial density P(R), where puR? =

Z?;ll M (7} = Rem)? +m(F — Rem)? and Ry, denotes the
center-of-mass vector of the n-body system. A small hy-
perradius R implies that all n particles are close together
while a large hyperradius implies that two or more par-
ticles are far away from each other [48]. The hyperradial
density P(R), normalized such that [;* P(R)dR = 1,
indicates the likelihood of finding the n-particle system
with a given R. We calculate the hyperradial densities
as well as other structural properties by sampling the
n-particle density obtained by the stochastic variational
approach via a Metropolis walk [49].

Figures 3(a) and 3(b) show the hyperradial densities
P(R) forn = 3 (k = 85 and L™ = 17) and n = 4
(k = 9.75 and LT = 17) for various 7o /as [45]. For these
mass ratios, the three- and four-body systems support
very weakly-bound states. To allow for a direct compar-
ison, dotted and solid lines in the inset of Fig. 3(a) show
the hyperradial densities for n = 3 (k = 8.5) and n = 4
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FIG. 3: (Color online) (a) Solid, dashed, dotted and dash-
dotted lines show P(R) of the energetically lowest-lying state
for n =3, k = 8.5 and 7o/as = 0.004, 0.005, 0.006 and 0.015,
respectively. Inset: Dotted, dash-dotted and solid lines show
P(R) for n =3 (k= 8.5 and 1o/as = 0.004), n =3 (k =9.75
and ro/as = 0.004), and n =4 (k = 9.75 and 7¢/as = 0.004),
respectively. (b) Solid, dashed, dotted and dash-dotted lines
show P(R) for n = 4, k = 9.75 and ro/as = 0.004, 0.005,
0.006 and 0.015, respectively. For r¢/as = 0.004,0.005 and
0.006, the energetically lowest-lying state is considered. For
as/ro = 0.015, the energetically second-lowest lying state is
considered. Inset: Solid and dotted lines show nyaq(r;) for the
heavy and light particles, respectively, for n = 4, k = 9.75,
ro/as = 0.004 and 1% symmetry.

(k = 9.75) for rg/as = 0.004. The hyperradial densi-
ties for n = 3 with k = 8.5 and n = 4 with k = 9.75
agree qualitatively. They have a small amplitude for
R/as < 1, peak around R/as = 2 and fall off exponen-
tially for R > as for all r¢/as considered. For fixed k,
the hyperradial densities move smoothly “outward” with
decreasing ro/as. Importantly, the hyperradial density
has vanishingly small amplitude not only when R ~ rg
but also for notably larger R values [46]. For n = 3,
this is consistent with the hyperradial density obtained
within the zero-range framework [20, 47], confirming that
the three-body states considered are fully universal, i.e.,
fully determined by as. The qualitatively similar behav-
ior of the n = 3 and 4 hyperradial densities for similarly
weakly-bound states provides, combined with the ener-
getics, strong evidence that the four-body states are also
universal.

The dash-dotted line in the inset of Fig. 3(a) shows
the hyperradial density for n = 3, K = 9.75 and ro/as =
0.004. The three-body system is more tightly bound than



the four-body system with the same x and r¢/as (solid
line). In a naive picture, one may imagine that the four-
body system is comprised of a trimer with a fourth atom
loosely attached to the trimer. Structures like this have
been observed for the excited tetramer state attached
to the Efimov trimer state comprised of three identical
bosons [9, 10]. Our analysis of the pair distribution func-
tions and radial densities indicates that the situation for
the tetramers considered here is different. The structural
properties of the tetramer for a given x loosely resemble
those of the trimer with smaller x but comparable bind-
ing energy. Solid and dotted lines in the inset of Fig. 3(b)
show the radial density naq(r;), normalized such that
AT fooo nrad(rj)r?drj = 1, for the heavy and light particles
of the n = 4 system; the position vector 7, j =1,--+ ,n,
is measured with respect to Ry, and r; = |7;|. For large
r;, the radial densities of the heavy particles and the light
particle are nearly indistinguishable. For small 7}, nraq
goes to zero for the heavy particles but has an apprecia-
ble amplitude for the light particle, suggesting that the
light particle is “shared” among the heavy particles.

In summary, we analyzed heavy-light mixtures in three
spatial dimensions, where the heavy-light pairs interact
through short-range potentials with positive s-wave scat-
tering lengths. Despite the Pauli exclusion principle,
which acts as an effective repulsion between the identical
heavy fermions, the four-body system supports a univer-
sal bound state if the mass ratio between the heavy and
light particles is larger than about 9.5. The light par-

ticle acts as a mediator that “glues” the four-body sys-
tem together, just as electrons in Hj or Hy glue together
the protons by way of the exchange interaction [50]. Al-
though the three-body energy shows a fairly strong de-
pendence on g, we found that the ratio F4/Fj3 is, away
from the resonance-like feature, roughly constant for a
fairly wide range of ro/as values, suggesting that the
universal four-body states can be observed in cold atom
experiments with current technologies. The existence of
universal tetramer states opens the possibility to search
for novel tetramer phases in many-body systems, promis-
ing a rich phase diagram of heavy-light mixtures on the
positive scattering length side. In the future, it will be
interesting to investigate how the universal four-body
states discussed here are affected by non-universal three-
and four-body states and how these states are connected
to Efimov tetramers that have been predicted to exist for
13.384 < k < 13.607 [22].
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