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We present a method for obtaining outer valence quasiparticle excitation energies from a DFT-based calcula-
tion, with accuracy that is comparable to that of many-body perturbation theory within the GW approximation.
The approach uses a range-separated hybrid density functional, with asymptotically exact and short-range frac-
tional Fock exchange. The functional contains two parameters - the range separation and the short-range Fock
fraction. Both are determined non-empirically, per system, based on satisfaction of exact physical constraints for
the ionization potential and many-electron self-interaction, respectively. The accuracy of the method is demon-
strated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-
dianydride (PTCDA) and 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA). We envision that for finite
systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently
out of reach large-scale systems.

Development of a non-empirical theory for quantitative
electronic structure calculations, which combines predictive
power with computational simplicity, is a long-standing chal-
lenge for molecular and solid-state physics [1, 2]. Presently,
many-body perturbation theory within the GW approximation
[3–5] is widely considered to be the first principles approach
that provides the best balance between accuracy and computa-
tional tractability. This approach is couched in a formally rig-
orous theory for quasiparticle excitations and has been shown
to provide remarkably quantitative predictions for the elec-
tronic structure of a wide variety of molecular, solid-state, and
low-dimensional systems (see, e.g., [4–10]).

Unfortunately, present-day GW calculations are still signif-
icantly limited in system size and complexity. They can also
be challenging to converge [11–13]. Therefore, it is common
practice to rely instead on density functional theory (DFT)
[14], which is much simpler computationally. However, this
comes at a significant cost in accuracy. Solutions of the Kohn-
Sham equation (in either its original [15] or generalized [16]
form) generally do not rigorously correspond to quasiparticle
energies and orbitals. Practical DFT calculations can still be,
and often are, successful because occupied DFT eigenvalues
can, in principle, serve as good approximations to removal
energies of energetically high-lying occupied orbitals [6, 17–
20]. Even so, two major problems remain [17]. First, it is
often found that the eigenvalue spectrum can depend strongly,
and even qualitatively, on the choice of the approximate den-
sity functional. Second, the energies of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molec-
ular orbital (LUMO) typically do not correspond to the ion-
ization potential and electron affinity, respectively.

In this Letter, we show that DFT-based calculations, in
which outer-valence orbitals do represent quasiparticle exci-
tations, are in fact possible, opening the door to inexpensive

prediction of quasiparticle excitations. Our approach is based
on a range-separated hybrid density functional, which is op-
timally tuned to obey Koopmans’ (ionization potential) the-
orem and to minimize many-electron self-interaction errors,
without any recourse to empiricism.

Recently, Stein et al. [21] suggested a new method for pre-
dicting the fundamental gap of finite systems from general-
ized Kohn-Sham HOMO and LUMO eigenvalues, based on
a non-empirical optimally-tuned range-separated hybrid (OT-
RSH) functional. In an RSH functional, the Coulomb repul-
sion is partitioned into a short-range (SR) and a long-range
(LR) part, such that the LR exchange is treated with a Fock
operator whereas the SR exchange is treated using (semi-
)local exchange [22]. The range-separation parameter, γ, is
optimally-tuned by demanding that the DFT version of Koop-
mans’ theorem (ionization potential theorem) be obeyed, i.e.,
by determining γ, per-system, such that the HOMO eigenval-
ues of the neutral and anionic system are as close as possible
to the ionization potential and electron affinity of the neutral,
respectively, making the gap contribution of a derivative dis-
continuity [17, 23, 24] negligible. Refaely-Abramson et al.
have shown the efficacy of this approach, using the optimally-
tuned RSH, denoted here as OT-γRSH, for a range of organic
molecules of relevance to photovoltaics [25]. This results in
HOMO and LUMO levels on par with the GW ones. It can
perhaps be hoped, then, that the outer-valence occupied or-
bitals of finite systems could also be well described with this
tuned functional.

To test this notion, Fig. 1(a,b) presents a comparison of
experimental photoemission spectra and theoretical DFT and
GW eigenvalue spectra [26] for perylene and pentacene. Here
and throughout, DFT eigenvalue spectra were performed us-
ing QChem [27] with the cc-PVTZ basis set [28] and GW
calculations were performed using the BerkeleyGW code
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[29] (details are given in the supplementary information, SI).
For both molecules, the GW spectrum agrees well with ex-
periment. The DFT spectrum constructed using the gener-
alized gradient approximation (GGA) in its Perdew-Burke-
Ernzerhof (PBE) form [30] does not agree with GW, but is pri-
marily rigidly shifted from it, owing to the missing derivative-
discontinuity in the exchange-correlation functional [23]. Hy-
brid functionals, e.g., PBE0[31] (which is based on the PBE
functional but with 25% of the GGA exchange replaced by
Fock exchange) mitigate (but do not solve) the derivative dis-
continuity problem [17, 24] and consequently improve the
spectrum by shifting (and slightly stretching) it. Still, the
PBE0 spectrum exhibits a significant rigid shift. Conversely,
the OT-γRSH is in quantitative agreement with GW and ex-
periment (average unsigned error of ∼0.2 eV over a range of
∼3 eV below the HOMO), as hoped for.

Unfortunately, this simple idea is not sufficient for
more complex molecules, such as 3,4,9,10-perylene-
tetracarboxylic-dianydride (PTCDA) and 1,4,5,8-
naphthalene-tetracarboxylic dianhydride (NTCDA)
(Fig. 1(c,d)), where GW spectra agree with experiment
but the OT-γRSH spectra present serious deviations from
GW in both orbital position and ordering. These molecules
have been chosen because, while still reasonably simple,
they exhibit a mixture of localized (on the anhydride side
groups) and delocalized (on the perylene or naphthalene
core) outer valence orbitals, as shown in Fig. 1(c,d). Dori
et al. [32] pointed out that this causes the PBE spectrum of
PTCDA to be in poor agreement with GW even after a rigid
shift, as also shown in Fig. 1(c). The spectral distortions
result primarily from spurious positive energy shifts of the
localized orbitals, leading to the conjecture that they reflect
significant self-interaction errors (SIE)[32]. Körzdörfer et al.
[33] showed that NTCDA has a similar problem, as can be
seen in Fig. 1(d), and proved the conjecture by quantifying
the per-orbital SIE for both molecules. Furthermore, they
showed that self-interaction-corrected calculations, within a
generalized optimized effective potential scheme, provide a
non-empirical route for obtaining agreement with experiment,
up to a rigid shift of both HOMO and LUMO (and possibly
some mild stretching).

For both PTCDA [32] and NTCDA [33], a different non-
empirical route for improvement of the eigenvalue spectral
shape is the use of the above-mentioned PBE0 hybrid func-
tional, which possesses a fixed fraction of exact exchange, as
shown in Fig. 1(c,d). Indeed, Körzdörfer and Kümmel [34]
showed that such hybrids can incorporate an important part of
the first order correction of the Kohn-Sham eigenvalues when
used in a generalized Kohn-Sham way, i.e., with non-local
Fock exchange. However, recent orbital tomography experi-
ments [35] showed that the orbital ordering in hybrids can still
be wrong. This is also reflected in Fig. 1c, and is likely a con-
sequence of the hybrid functional not being self-interaction
free. In addition, conventional hybrid functionals do not re-
solve the ionization potential and fundamental gap problem.
Thus, our goal is to provide a generalized Kohn-Sham scheme

that does yield the correct excitation thresholds and is also
self-interaction free. We now show that this is an achievable
goal.

The results of Fig. 1 suggest that further improvement could
be obtained by combining a fraction of SR Fock exchange that
would improve the description of the localized orbitals, with
LR Fock exchange that is essential for gap prediction. Such
generalization of the RSH scheme has in fact been suggested
by Yanai et al. [37], who partitioned the Coulomb operator
according to

1

r
=
α+ βerf(γr)

r
+

1 − [α+ βerf(γr)]

r
. (1)

Note that this form reduces to that of a conventional hybrid
functional with the choice β = 0 (for PBE0, α = 0.25) and to
a ”pure LR” RSH for α = 0, β = 1.

The parameters α, β, and γ can be determined as universal
parameters semi-empirically, as done for all three of them in
the CAM-B3LYP functional of Yanai et al. [37] However, as
discussed in, e.g., refs. [21, 24, 25, 38–40], no set of fixed
values is universally useful for spectroscopy. Instead, we pur-
sue the optimal tuning strategy, where we determine all three
parameters from first principles, per-system, based on satis-
faction of physical constraints.

First, following ref. [41], we insist on α + β = 1. This
choice guarantees that full Fock exchange is obtained asymp-
totically, which enforces the correct asymptotic potential.
This, in turn, is essential for retaining accurate gap predictions
[24]. As in Refs. [42, 43], we shall use PBE-based semi-local
exchange and correlation components. However, in these arti-
cles α was taken as a constant of 0 and 0.2, respectively, with
γ a universal empirically determined constant. We shall seek
to optimize both α and γ non-empirically, based on additional
constraints.

Per each choice of α, γ can be determined from first princi-
ples by enforcing the ionization potential (Koopmans’) theo-
rem, i.e., by choosing γ such that the HOMO eigenvalue is as
close as possible to the ionization potential [44, 45]. In princi-
ple, this exact condition should be obeyed for any stable ionic
state of the molecule. Therefore, one can seek γ that best
satisfies (say, in the least squares sense) multiple ionization
potential conditions, by minimizing a target function J(γ) of
the form:

J2(γ;α) =
∑
i

(εγ;αH(N+i) + IP γ;α(N + i))2, (2)

where εH(N+i) is the HOMO eigenvalue of theN+i electrons
system, N being the number of electrons in the neutral sys-
tem and i an integer representing electrons added or removed
from it, with IP (N + i) the corresponding ionization poten-
tial, calculated from energy differences. In previous work that
emphasized accurate gap prediction [21, 24, 25, 38, 40], γ was
chosen so as to satisfy this condition as closely as possible for
both neutral and anion (i.e., i =0 and 1 in Eq. 2), so as to
obtain both the ionization potential and the electron affinity
(the latter being equal to the ionization potential of the anion).
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FIG. 1. (Color online) Outer valence eigenvalue spectra of (a) Perylene, (b) Pentacene, (c) PTCDA, (d) NTCDA, as obtained from DFT
calculations using the PBE, PBE0, and OT-γRSH, with additional OT-αγRSH results for PTCDA and NTCDA, compared with GW eigenvalue
spectra and with experimental gas phase photoemission spectra [36]. H and L denote HOMO and LUMO, respectively. For PTCDA and
NTCDA, representative localized and delocalized orbitals are presented. All computational spectra have been broadened by convolution with
a gaussian to facilitate comparison with experiment.

Here, this does not suffice, as γ must also reflect a balance of
SR and LR exchange appropriate for the treatment of localized
states. Because with OT-γRSH the highest localized orbital is
HOMO-1, for both PTCDA and NTCDA, we additionally im-
pose an ionization potential condition for the cation, i.e., i=-1,
0, and 1 in Eq. 2 (see SI for additional details).

The remaining question, then, is how to determine the SR
Fock exchange fraction, α. To understand the effect of α on
the spectrum, Fig. 2 shows the outer valence eigenvalues as a
function of α, for the example of PTCDA (similar results for
all other molecules are given in the SI). For each choice of α,
the optimal value of γ, determined by employing Eq. 2 with
a triple summation, has been used and is also shown. Sev-
eral important trends can be distinguished immediately. First,
as α increases, the optimized γ decreases. This is reason-
able: the range above which the exchange is dominated by its
LR contribution roughly corresponds to 1/γ, and the extent
of LR Fock corrections should decrease with increasing SR
Fock contributions. Second, for α between 0 and 0.5, γ tuning
is successful throughout in maintaining a HOMO-LUMO gap
that is constant to within ∼0.05 eV and is in excellent agree-
ment with GW. Larger α values are not given because for too
large α determining a corresponding γ that obeys Koopmans’
theorem to a meaningful accuracy is no longer possible. This
makes sense, because there is a limit to the extent of SR Fock
exchange that can be used while still maintaining compatibil-
ity with a semi-local correlation expression [17].

Third, Fig. 2 clearly exposes the different behavior of
the two types of orbitals present in the outer valence re-
gion. Eigenvalues corresponding to delocalized orbitals (on
the perylene core) are essentially indifferent to the choice of α
(to within a mean value of 0.2 eV). Conversely, all anhydride-

localized orbitals are highly sensitive to α. As an example,
the doubly-degenerate orbital, that is HOMO-1/2 for α=0,
is HOMO-5/6 for α=0.5, and it changes in energy from ∼-
1.5 eV to ∼-2.8 eV. A similar picture emerges for NTCDA.
For perylene and pentacene, all outer valence orbitals within
∼3 eV below the HOMO are delocalized and the spectrum is
largely independent of α (see SI for details), which explains
the success of the SR-exchange-free OT-γRSH functional for
these molecules (Fig. 1(a,b)). Deeper lying orbitals possess
different degrees of localization and are outside the scope of
this work.

How to choose an optimal α, then, without empiricism?
Recently, Srebro and Autschbach [46] suggested that it can
be obtained by insisting on an additional property satisfied by
exact DFT, namely, that for ensemble states described by a
fractional number of electrons the total energy versus particle
number curve must be piecewise linear [44]. They used such
tuning to obtain an accurate CuCl electric field gradient. We
stipulate that satisfaction of the piecewise linearity constraint
is important for spectroscopy as well, for two reasons. First,
Yang and co-workers have emphasized the importance of lin-
ear segments for accurate gap prediction [47, 48]. Second,
enforcing piecewise linearity has been shown to be essential
for the accurate spectroscopy of localized states [49, 50] and
deviation from this condition is in fact often dubbed a ”many-
electron SIE” or a ”delocalization error” [48, 51].

Several groups have already shown that for a well-
constructed RSH functional, curves of the energy as a func-
tional of the fractional number of electrons, for the [N-1,N]
and [N, N+1] segments, are much more linear than those ob-
tained with conventional functionals, even in the absence of
optimal tuning [24, 39, 46, 51–53]. We have performed frac-
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FIG. 2. (Color online) Eigenvalue energy as a function of the short-
range Fock fraction, α, with the optimal value of the range-separation
parameter, γ (Bohr−1) deduced for each choice of α, for PTCDA.
HOMO and LUMO levels are marked. Rectangle denotes the opti-
mal α, determined from the minimization procedure described in the
text.

tional electron calculations for our benchmark molecules us-
ing NWChem [54] with the same basis set as above. As shown
in Fig. 3 using PTCDA as an example, the above findings ap-
ply here as well: Whereas PBE and PBE0 exhibit a notable
deviation from linearity, for an OT-RSH functional the devi-
ation from linearity is too small to be detected by the naked
eye. An alternative approach to assessing segment linearity,
which is more directly relevant to spectroscopy, is to consider
the dependence of the eigenvalues on the fractional number
of electrons [51], as shown in the inset of Fig. 3 for [N-2,
N+1]. If the linear-segment constraint is satisfied, the HOMO
eigenvalue should be constant between integer electron val-
ues, owing to Janak’s theorem [55]. Again, only the OT-RSH
functional obeys this requirement closely enough. The opti-
mal value of α can thus be obtained by choosing the α (and
therefore the corresponding γ) that minimizes the three cur-
vatures of the ∆E(∆N ) curve for −2 < ∆N ≤ 1. It is found
to be 0.2 for both PTCDA and NTCDA.

Satisfactorily, we find that for both molecules the orbital or-
dering for the optimal α is similar to the GW ordering (with
the exception of PTCDA HOMO-5 orbital which is slightly
misplaced), without any need for level shifting: OT-αγRSH
eigenvalues of PTCDA delocalized states deviate from the
same in GW by ∼0.18 eV (the largest deviation being 0.25
eV). For localized states, this deviation is ∼0.01 eV. For
NTCDA, the average deviation of all states from GW is ∼0.07
eV. These numbers are well within the accepted accuracy of
either calculation. Indeed, the OT-αγRSH spectrum, also
shown in Fig. 1, agrees extremely well with the GW one for
both absolute HOMO and LUMO positions and the quasipar-
ticle spectrum of filled states, for all examined molecules.

In conclusion, we demonstrated, using four important

Functional 
Curvature 

-1<ΔN≤0 0<ΔN≤1 

        PBE 1.74 1.70 

        PBE0 1.18 1.17 

       OT-αγRSH -0.02 2E-4 

FIG. 3. (Color online) Deviation of total energy from that of the
neutral molecule, ∆E, and HOMO eigenvalue, εHOMO (inset), as a
function of the fractional deviation of the number of electrons from
that of the neutral molecule, ∆N , computed for PTCDA using PBE,
PBE0, and OT-αγRSH (α=0.2, γ=0.160 Bohr−1). The table shows
the curvature of each functional, in eV, obtained from fitting the
∆E(∆N ) curve to a second order polynomial.

benchmark molecules, that DFT-based calculations can reach
an accuracy that is comparable to that of GW calculations.
This was achieved by using a PBE-based range-separated hy-
brid density functional, with asymptotically exact and short-
range fractional Fock exchange. Importantly, both range-
separation and Fock fraction are determined non-empirically,
based on satisfaction of exact constraints for the ionization po-
tential and many-electron self-interaction error, respectively,
resulting in full predictive power for the outer valence elec-
tronic structure. We envision that the approach could be use-
ful directly as a low-cost alternative to GW that offers good
accuracy for both frontier and non-frontier quasiparticle ex-
citation energies. Additionally, because perturbative ”one-
shot” G0W0 is known to be sensitive to the DFT starting point
[9, 56, 57], our approach provides a novel optimal starting
point for subsequent GW calculations.
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[17] S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
[18] D. P. Chong, O. V. Gritsenko, and E. J. Baerends, J. Chem.

Phys. 116, 1760 (2002).
[19] O. V. Gritsenko and E. J. Baerends, J. Chem. Phys. 117, 9154

(2002).
[20] U. Salzner and R. Baer, J. Chem. Phys. 131, 231101 (2009).
[21] T. Stein, H. Eisenberg, L. Kronik, and R. Baer, Phys. Rev. Lett.

105, 266802 (2010).
[22] T. Leininger, H. Stoll, H. J. Werner, and A. Savin, Chem. Phys.

Lett. 275, 151 (1997).
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