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For charged systems in heterogeneous dielectric media, a key obstacle for molecular dynamics (MD) simula-
tions is the need to solve the Poisson equation in the media. This obstacle can be bypassed using MD methods
that treat the local polarization charge density as a dynamic variable, but such approaches require access to a
true free energy functional; one that evaluates to the equilibrium electrostatic energy at its minimum. In this
letter, we derive the needed functional. As an application,we develop a Car-Parrinello MD method for the simu-
lation of free charges present near a spherical emulsion droplet separating two immiscible liquids with different
dielectric constants. Our results show the presence of non-monotonic ionic profiles in the dielectric with lower
dielectric constant.

It is hard to overstate the importance of the electrostatic
force in biological and soft-matter sciences. Electrostatic in-
teractions play a major role in determining the structure and
function of several biological macromolecules, such as pro-
teins and DNA [1, 2]. In cell signaling, the creation of elec-
trical potential differences and transfer of ions are of chief
importance [3]. On the other hand, electrostatic forces allow
the stabilization of many synthetic structures, endowed with
remarkable properties: self-assembled colloidal dispersions
[4], overcharged surfaces [5], patterned surfaces by competi-
tion between short-range and Coulombic interactions [6], and
faceted thin shells [7], to name a few.

Investigation of biological and soft-matter systems there-
fore requires an accurate consideration of electrostatic inter-
actions. In many situations, computational methods that treat
ions individually are necessary. This is the case, for exam-
ple, where finite size effects become significant, where the
medium has a complex geometry, or where the dielectric re-
sponse of the medium is inhomogeneous. Computing prop-
erties of such systems via numerical simulation involves its
own challenges. Due to the long range of the Coulomb force,
a system ofN charges requires an expensiveO(N2) force
calculation at every simulation step. Attempts to ameliorate
this scaling have resulted in the development of several meth-
ods: Ewald summation, particle-mesh methods, fast multipole
methods [8], and the local electrostatics algorithms [9–11]. In
this Letter, we focus on the problems associated with the pres-
ence of dielectric heterogeneities in the medium.

The presence of free charges in a medium polarizes its un-
charged constituents, leading to a complex behavior for the
electric field and the polarization field itself. Accurate inves-
tigations of systems with electrostatic interactions should in-
corporate this dielectric response of the medium. In many
cases, it is sufficient to consider the polarization effectsby de-
scribing the dielectric properties with a spatially varying di-
electric constant. In the simplest case of a uniform dielectric
response, a single dielectric constant enters the coarse grained
model, and the simulation proceeds as it would in free space,
albeit with a scaled Coulomb’s law. However, most real sit-
uations involve regions with different dielectric response, as
is the case for proteins within an aqueous cellular medium or

for emulsions where oil and water are partitioned [12]. In the
presence of this varying dielectric response, the simplestform
of Coulomb’s law breaks down and one has to solve the Pois-
son equation, ateachsimulation step, to obtain the necessary
force information for the propagation of charges. This ad-
versely affects the stability and efficiency of the resulting nu-
merical procedure. Because of these challenges, the problem
of treating variable dielectric response in charge simulations
continues to receive much attention [10, 13–20].

In this Letter, we present a variational formulation of elec-
trostatics that is applicable to problems involving dielectric
heterogeneities. We construct an energy functional with the
polarization charge density as the sole variational field. This
functional works for arbitrary free charge configurations and
any kind of spatial variation in dielectric response. As we
review later, these characteristics have not been realizedin
previously proposed functionals. We explicitly specialize the
functional to the case of sharp interfaces, where only the
surface polarization charge density needs to be extremized.
We also demonstrate that our functional can be used in sim-
ulations of charged systems by employing a Car-Parrinello
molecular dynamics (CPMD) scheme [21] where the surface
polarization charge density is treated as a dynamical variable.
We note that a similar CPMD approach has been previously
proposed [13], that employs a functional of the polarization
vector in all space as the basic variable.

We adopt Gaussian units in our formulation. The polariza-
tion charge densityω is defined by the relationω = −∇ · P,
whereP is the polarization field. We assume that the medium
polarization obeys linear response,P = χE, whereχ is the
susceptibility andE is the electric field. Employing the nota-
tionρ for the free charge density andG(r, r′) = |r−r

′|−1 for
the bare Green’s function, our functional reads:

F [ω] =
1

2

∫∫

ρrGr,r′ (ρr′ +Ωr′ [ω]) d
3r′d3r

−
1

2

∫∫

Ωr[ω]Gr,r′ (ωr′ − Ωr′ [ω]) d
3r′d3r,

(1)

whereΩr[ω] is both a functional ofω(r) and a function ofr,



2

and is defined as

Ωr[ω] = ∇ ·

(

χr∇

∫

Gr,r′ (ρr′ + ωr′) d
3r′

)

. (2)

Extremization ofF [ω] leads to the equality:ω(r) = Ωr[ω],
which is the correct physical relation thatω must satisfy. In
spite of the complex dependence onω(r), our functional re-
tains a simple interpretation at equilibrium as, owing to the ex-
tremum condition, its second term vanishes and the first term
becomes the true electrostatic energyU = 1

2

∫

ρ(r)φ(r)d3r,
whereφ(r) is the electrostatic potential. Furthermore, it can
be shown that the second variation ofF [ω] is positive, imply-
ing F [ω] becomes a minimum at its extremum. We provide
the proof of this assertion in the supplemental material.

A variety of functionals employing various electrostatic
quantities as field variables have been proposed [11, 14, 17,
22–27]. Many of these functionals are not energy functionals
[14, 22, 25, 26]; namely, they either become a maximum at
extremum [25, 26] or evaluate to negative electrostatic energy
at equilibrium [14, 22]. This rules out their use in dynamical
optimization methods [21]. Attard [17] has given an energy
functional of the surface polarization charge density, buthis
functional is derived for a specific system that involves allfree
charges to be constrained in one uniform dielectric medium.
Other energy functionals [11, 23, 24] involve relatively ex-
pensive vector function variables, requiring three-dimensional
vectorial specification [11, 13]. In problems where the di-
electric response can be modeled as piecewise uniform, our
functional reduces to a functional of the surface polarization
charge density, which requires only a two-dimensional scalar
specification and offers distinct numerical advantages over the
vector variables.

Our main result, Eq. (1), can be derived as follows. We
begin with the standard expression for the electrostatic en-
ergy written as a functional:F [E] = 1

8π

∫

ǫ (r) |E (r)|
2
d3r,

whereǫ is the dielectric permittivity. Next, following [28], we
include Gauss’s law as a constraint to this functional via the
Lagrange multiplierφ:

F [E,φ] = F [E]−

∫

φr

(

∇ ·

(

ǫrEr

4π

)

− ρr

)

d3r. (3)

Note that we takeF to depend parametrically onρ. Using
ǫ = 1 + 4πχ andP = χE, we introduceP in (3) to obtain

F [E,P, φ] =
1

8π

∫

|E(r)|2d3r +

∫

|P(r)|2

2χ(r)
d3r

−

∫

φ (r)

(

∇ ·
E (r)

4π
+∇ ·P (r)− ρ (r)

)

d3r.

(4)

Variations of (4) with respect toE andφ allow us to eliminate
all variables in favor ofP, leading to

F [P] =

∫

|Pr|
2

2χr

d3r +
1

2

∫∫

(ρr −∇ ·Pr)Gr,r′

× (ρr′ −∇ ·Pr′) d
3r′d3r.

(5)

F [P] has been derived before using different derivations
[23, 24]. It can be shown thatF [P] is an energy functional;
that is, its minimum computes the equilibrium electrostatic
energy [17]. We wish to transformF [P] to an energy func-
tional ofω. This transition begins by inserting the definition
of ω in (5) via a Lagrange multiplierψ:

F [P, ω, ψ] =

∫

|Pr|
2

2χr

d3r +
1

2

∫∫

(ρr + ωr)Gr,r′

× (ρr′ + ωr′) d
3r′d3r −

∫

ψr (ωr +∇ ·Pr) d
3r.

(6)

We note thatψ can be shown to coincide with the electrostatic
potentialφ at equilibrium. Taking variations of the above
functional with respect toω, P, andψ gives:

ψ(r) =

∫

Gr,r′ (ρr′ + ωr′) d
3r′, (7)

Pr = −χr∇

∫

Gr,r′ (ρr′ + ωr′) d
3r′, (8)

ωr = ∇ ·

(

χr∇

∫

Gr,r′ (ρr′ + ωr′) d
3r′

)

. (9)

It is evident from (7) and (8) thatψ is the electrostatic poten-
tial. In addition, following (2), we can recast Eq. (9) as the
equality of two quantities: the polarization charge density ω
and the operatorΩ[ω]. This equality is precisely the extremum
condition forF [ω]. Substitution ofψ, P, andω from (7), (8),
and (9) respectively, into (6) leads to our central result, the
functional in (1).

We note that not all substitutions lead to our result.
For example, eliminatingP andψ from (6) using (7) and
(8) gives a functionalI[ω] with the functional density:
ρrGr,r′ (ρr′ +Ωr′ [ω]) /2− ωrGr,r′ (ωr′ − Ωr′ [ω]) /2. Upon
extremization,I[ω] singles out the correct physical quantity,
but becomes a maximum at equilibrium. In fact,I[ω] is ex-
actly the negative of the functional in [14], neither of which
are energy functionals. FunctionalsF [ω] and I[ω] share a
common structure: the expression for the total electrostatic
energy (the first term in either functionals) is constrained
by the correct physical relation thatω must satisfy, namely
ω − Ω[ω] = 0. The only but crucial difference between these
two functionals is the choice of the Lagrange multiplier that
enforces this constraint. In past attempts, the Lagrange multi-
plier that leads to an energy functional ofω remained elusive.
Our current formulation finds the desired multiplier.

We now consider the application of our functional to the
problem of point charges in a system with piecewise-uniform
dielectrics. For the sake of brevity, we will restrict ourselves
to two uniform dielectrics, with different permittivitiesǫ1 and
ǫ2, separated by a single sharp interface. Extension to mul-
tiple dielectrics and interfaces is straightforward. We assume
that free charges reside only in the bulk of the dielectric. The
free charge density isρ(r) =

∑N

i=1
qiδ (r− ri), whereqi

is the charge of theith particle andN is the total number of
charges. For this system, the induced charge density in the
bulk has the formωbulk(r) = (1/ǫ (r)− 1)ρ (r), which leads
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to an effective charge density ofρ(r)/ǫ(r). Also, the gradient
of χ vanishes everywhere except at the interface. Therefore
several volume integrals in Eq. (1) reduce to surface integrals
and the original functionalF [ω] is transformed to a functional
of the surface induced charge density:

F [ω] =
1

2

∫∫

ρrK
◦◦

r,r′ρr′d
3rd3r′ +

1

2

∫∫

ρrK
◦•

r,sωsd
3rd2s

+
1

2

∫∫

ωsK
••

s,s′ωs′d
2sd2s′, (10)

whereω(s) is the induced charge density at the positions on

the interface, andK
◦◦

,K
◦•

, andK
••

are, respectively, the effective
potentials of interaction between two free charges, between a
free charge and an induced charge, and between two induced
charges. These effective interactions are given by:

K
◦◦

r,r′ =
1

ǫr
Gr,r′ +

1

ǫr
Gr,r′

1

ǫr′
+

1

ǫr
Gr,r′

1

ǫr′

K
◦•

r,s =
ǫr − ǫm
ǫr

Gr,s +
Gs,r − (2ǫm − 1)Gr,s

ǫr
+

2Gr,s

ǫr

K
••

s,s′ = ǫm (ǫm − 1)Gs,s′ − (2ǫm − 1)Gs,s′ +Gs,s′. (11)

Hereǫm = (ǫ1 + ǫ2)/2 is the permittivity at the interface and

functionsG andG are defined as:

Ga,b = ǫd

∫

Ga,u n̂u · ∇uGu,b d
2u

Ga,b = ǫ2d

∫∫

n̂u · ∇uGa,uGu,v n̂v · ∇vGv,b d
2ud2v,

(12)

whereǫd = |ǫ2 − ǫ1|/4π is the permittivity jump at the in-
terface,a,b are arbitrary position vectors,u,v are position
vectors of arbitrary interfacial points, andn̂ is the unit normal
to the interface taken to point in the direction of increasing
permittivity.

In addition to providing a complete reformulation of elec-
trostatics in heterogeneous media, our formalism has immedi-
ate applications to important practical problems. SinceF [ω]
is an energy functional, it can be used for simulating free
charges in heterogeneous media which, as described above,
are basic models for phenomena in both biological and syn-
thetic settings. The simplest simulation schemes [14, 16] for
these systems require, in some way, the solution of the ex-
tremum condition,ω − Ω[ω] = 0, at each step. However,
when an energy functional is available, new approaches are
possible, such as the use of CPMD method [21]. In this ap-
proach,ω is treated as a dynamical variable and is assigned
a mass. The dynamic equations for the system follow from a
Lagrangian that contains an additional kinetic energy termfor
ω. The kinetic term is constructed so thatω remains close to
the exact polarization charge distribution at all times. Inother
words, we replace the expensive solution of the Poisson equa-
tion at each simulation step with anon-the-flycomputation of
the polarization effects.

We apply our method to free charges in piecewise-uniform
dielectrics, where the interfaces between the different uniform
dielectrics are closed surfaces of finite area. For simplicity, we
only consider impenetrable boundaries such that each region
has a fixed set of ions. We partition the surface boundaries
into M finite elements, and to each elementk we assign an
average induced charge densityωk and a fictitious massµk.
For the system withN free ions, we can write a Lagrangian
for the extended system ofN +M particles as:

L =

N
∑

i=1

1

2
miṙ

2

i +

M
∑

k=1

1

2
µkω̇

2

k − F [ωk; ri]− H [ri]. (13)

The first term is the kinetic energy ofN ions with massesmi

and positionri. The second is a fictitious kinetic energy for
the surface induced charge density. The electrostatic potential
energy of the system computed by using our functional con-
stitutes the third term. And the final term contains a set of
truncated Lennard-Jones potentials to model the hard-coreof
the particles and the impenetrability of the surfaces.

Starting from a point in the extended configuration space,
we generate its dynamics via standard MD technique, using
the equations of motion derived from the LagrangianL for
the ions and the fictitious induced charge values. To simu-
late the behavior of the physical system at finite temperature
T , we couple the augmented system to a set of Nosé-Hoover
thermostats. The ions couple to a thermostat at temperature
T , while the induced charge values couple to one at much
lower temperatureT2. This allows the evaluated energy of the
physical system to be close to its thermal equilibrium valueby
limiting the contribution of the fictitious kinetic energy.This
two-temperature approach is a standard feature of CPMD [29–
31]. The masses of the induced charge degrees of freedom are
chosen so as to make their energy contribution small. In prac-
tice, we choose these masses to be proportional to the areas of
the finite elements, and the proportionality constant is chosen
to optimize the stability of the simulation. Another feature of
the system we simulate is that, as a result of Gauss’s law, the
net induced charge at each interface is a constant. In our sim-
ulations, we choose to directly enforce this constraint at each
step via the SHAKE-RATTLE routine [32].

We have used the CPMD method outlined above to simu-
late ions near a spherical interface separating media of differ-
ent permittivities. The simulations have been carried out for
various values of permittivities, ion concentrations and ion va-
lencies. As a test case, we considered a model for charged col-
loidal dispersions, where mobile charges are present in only
one of the two dielectrics. We obtained results that match
those previously published [15, 20]. In this Letter, we focus
on a much less explored problem of ions present inbothsides
of the spherical interface. This system can be considered asa
model for a liquid-liquid emulsion droplet in the presence of
an electrolyte [33, 34]. We consider the case where the ions
do not cross the interface, just like in the experiments of [35].
We model the ions as repulsive Lennard-Jones (LJ) spheres
of diameterσ = 0.357 nm. The spherical interface of radius
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FIG. 1. Ionic density profiles for different concentrationsof monova-
lent electrolyte inside the dielectric sphere. The outsidesalt concen-
tration is held fixed at 0.3 M for all curves. The inset shows the ac-
cumulation of ions near the interface on the lower permittivity side.
The dashed line in the middle shows the position of the interface.
On the left side we sketch our model for the liquid-liquid emulsion
droplet in the presence of a monovalent electrolyte (not to scale).

a = 10σ separates the two media: the interior dielectric has
permittivity ǫin = 80, while the exterior dielectric has per-
mittivity ǫout = 35. The whole system of ions and dielectric
media is taken to be in a spherical simulation cell of diameter
b = 20σ such that the centers of the two spheres coincide,
see the sketch in Fig. 1. Both the interface and the simulation
cell boundary are modeled as repulsive LJ walls. We consider
monovalent electrolyte (1:1) atT = 298 K and cin (cout) de-
note the salt concentrations inside (outside) the spherical in-
terface. The interface is discretized with nearlyM = 2000
points, and the parameters associated with the CPMD simula-
tion are:∆ = 0.001, µk ∼ 5 − 10, T2 = 0.001T . Here,∆ is
the simulation timestep and these values are given in LJ units
(energy:kBT , length:σ).

Our simulation results pass two tests of stability and accu-
racy. We have analyzed the energy of the simulated system as
a whole as well as the energies of its subsystems. Fluctuations
in the total energy of the physical system were found to be 50
times smaller than those in the physical kinetic energy, imply-
ing good energy conservation. Also, the energy of the ficti-
tious kinetic modes was kept very close to zero at all times.
Our second test relates to the effectiveness of our scheme to
reproduce the correct polarization charge distribution. At reg-
ular intervals during the course of the simulation of a number
of specific cases, we collected and stored the ion coordinates
and surface charge densities. Then, we carried out an ordinary
minimization of the functional to determine the exact induced
density, and compared it to the distributions obtained in the
simulation. Ouron-the-flymethod results were within 2% of
those obtained with direct minimization.

Our simulations of the 1:1 electrolyte lead to the density
profiles shown in Fig. 1. We consider different values ofcin

while maintainingcout at 0.3 M, thus conducting a study sim-
ilar in spirit to the experiment in [35]. The ion distributions,

for all concentrations, reach a constant value in the bulk on
either side but show interesting features near the interface. On
the side having the higher value of permittivity, the ion den-
sity is depleted near the interface, which is largely the result
of the repulsion due to the induced surface charge. The deple-
tion is monotonic and gets more pronounced for higher values
of cin. On the other hand, in the exterior, lower-permittivity
dielectric, ions prefer to accumulate near the interface (see in-
set in Fig. 1). We also see that ionic profiles on this side of
the interface are non-monotonic. This is due to a combination
of Coulombic depletion near hard wall [36, 37] and attractive
surface polarization charge effects. We further observe that
increasing the internal salt concentration enhances the accu-
mulation of external ions near the interface. Several of these
features have been previously observed for planar interfaces
[16] and attributed generally to the same basic reasons.

We have presented the solution to the long-standing prob-
lem of providing a true free energy functional for electrostat-
ics that employs the polarization charge density as the varia-
tional field. This formulation has many applications, and we
have used it to develop an efficient CPMD simulation for a set
of point charges present in two dielectric media. The advan-
tages associated with dynamically optimizing our functional
in conjunction with the reduction in dimensionality achieved
by replacing the polarization vectors with induced surface
charges paves way for substantial improvements in our abil-
ity to simulate charges in heterogeneous media. As the func-
tional is general for linear media, simulation approaches de-
rived from it can be applied to many other systems, such as
those with arbitrary interface shapes or moving boundaries.
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