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For charged systems in heterogeneous dielectric medig, @dstacle for molecular dynamics (MD) simula-
tions is the need to solve the Poisson equation in the mediia.obstacle can be bypassed using MD methods
that treat the local polarization charge density as a dyoasmmiiable, but such approaches require access to a
true free energy functional; one that evaluates to the ibgiuim electrostatic energy at its minimum. In this
letter, we derive the needed functional. As an applicatiangdevelop a Car-Parrinello MD method for the simu-
lation of free charges present near a spherical emulsiguieirseparating two immiscible liquids with different
dielectric constants. Our results show the presence ofmametonic ionic profiles in the dielectric with lower
dielectric constant.

It is hard to overstate the importance of the electrostatidor emulsions where oil and water are partitioned [12]. la th
force in biological and soft-matter sciences. Electrastat presence of this varying dielectric response, the simfidest
teractions play a major role in determining the structuré an of Coulomb’s law breaks down and one has to solve the Pois-
function of several biological macromolecules, such as proson equation, atachsimulation step, to obtain the necessary
teins and DNA [1, 2]. In cell signaling, the creation of elec- force information for the propagation of charges. This ad-
trical potential differences and transfer of ions are ofe€hi versely affects the stability and efficiency of the resuyjtiru-
importance [3]. On the other hand, electrostatic forcasaall merical procedure. Because of these challenges, the pnoble
the stabilization of many synthetic structures, endowetth wi of treating variable dielectric response in charge sinnorhet
remarkable properties: self-assembled colloidal dispess continues to receive much attention [10, 13-20].

[4], overcharged surfaces [5], patterned surfaces by cimpe |, this Letter, we present a variational formulation of elec
tion between short-range and Coulombic interactions I,  ostatics that is applicable to problems involving diéiiec
faceted thin shells [7], to name a few. heterogeneities. We construct an energy functional wigh th
Investigation of biological and soft-matter systems there polarization charge density as the sole variational fieldis T
fore requires an accurate consideration of electrostates-i  functional works for arbitrary free charge configurations a
actions. In many situations, computational methods tleatttr any kind of spatial variation in dielectric response. As we
ions individually are necessary. This is the case, for examreview later, these characteristics have not been realized
ple, where finite size effects become significant, where th@reviously proposed functionals. We explicitly specialthe
medium has a complex geometry, or where the dielectric refunctional to the case of sharp interfaces, where only the
sponse of the medium is inhomogeneous. Computing propsurface polarization charge density needs to be extremized
erties of such systems via numerical simulation involves it We also demonstrate that our functional can be used in sim-
own challenges. Due to the long range of the Coulomb forceylations of charged systems by employing a Car-Parrinello
a system ofN charges requires an expensi¥¢N?) force  molecular dynamics (CPMD) scheme [21] where the surface
calculation at every simulation step. Attempts to amet®ra polarization charge density is treated as a dynamical bieria
this scaling have resulted in the development of severaimet We note that a similar CPMD approach has been previously
ods: Ewald summation, particle-mesh methods, fast muéipo proposed [13], that employs a functional of the polarizatio
methods [8], and the local electrostatics algorithms [l vector in all space as the basic variable.
this Letter, we focus on the problems associated with the-pre

; ) o . We adopt Gaussian units in our formulation. The polariza-
ence of dielectric heterogeneities in the medium.

i _ ] ] tion charge density is defined by the relation = -V - P,
The presence of free charges in a medium polarizes its URghereP is the polarization field. We assume that the medium
charged constituents, leading to a complex behavior for theg|arization obeys linear respond®,= yE, wherey is the

electric field and the polarization field itself. Accuratees- susceptibility anct is the electric field. Employing the nota-
tigations of systems with electrostatic interactions $than- {5 p for the free charge density agd{r, r') = |r —1/|~! for

corporate this dielectric response of the medium. In manyhe hare Green's function, our functional reads:
cases, it is sufficient to consider the polarization effegtde-

scribing the dielectric properties with a spatially vaxyidi- 1

electric constant. In the simplest case of a uniform dieiect Flw] = 5 // prGrer (ppr + Qe [w]) d®r' dPr
response, a single dielectric constant enters the cozasegr

mod_el, and the simulation proceeds as it would in free space, _ l// Qe [W] G (wrr — Qo [w)]) &0 dPr,
albeit with a scaled Coulomb’s law. However, most real sit- 2

uations involve regions with different dielectric respenas

is the case for proteins within an aqueous cellular medium owhere(,[w] is both a functional ofu(r) and a function of,

1)



and is defined as
Qplw] =V - (XrV/Gm/ (prr + wyr) d?’r’) N )

Extremization of# [w] leads to the equalityw(r) = Q. [w],

which is the correct physical relation thatmust satisfy. In
spite of the complex dependence ®ofr), our functional re-
tains a simple interpretation at equilibrium as, owing ®eix-

tremum condition, its second term vanishes and the first term

becomes the true electrostatic enetgy= 1 [ p(r)¢(r)d>r,

2

Z[P] has been derived before using different derivations
[23, 24]. It can be shown tha¥ [P] is an energy functional;
that is, its minimum computes the equilibrium electrostati
energy [17]. We wish to transfor# [P] to an energy func-
tional of w. This transition begins by inserting the definition
of w in (5) via a Lagrange multipliet:

P, 1
|2 | d37’ + 5 // (pr +Wr) Gr,r’

Xr (6)
X (pr/ —+ er/) d37’ld3T — /’l/)r (wr + V- Pr) d3T.

F[P,w, ] =

whereg¢(r) is the electrostatic potential. Furthermore, it can
be shown that the second variation®fw] is positive, imply- ~ We note that) can be shown to coincide with the electrostatic
ing .%|w] becomes a minimum at its extremum. We providepotential ¢ at equilibrium. Taking variations of the above
the proof of this assertion in the supplemental material. functional with respect tw, P, andy gives:

A variety of functionals employing various electrostatic
quantities as field variables have been proposed [11, 14, 17, P(r) = /Gm/ (prr + wer ) d>r, 7
22-27]. Many of these functionals are not energy functienal
[14, 22, 25, 26]; namely, they either become a maximum at P, — _er/Grﬂr/ (per + wer) A7, (8)
extremum [25, 26] or evaluate to negative electrostaticggne
at equilibrium [14, 22]. This rules out their use in dynanhica

optimization methods [21]. Attard [17] has given an energy

functional of the surface polarization charge density, Hiat
functional is derived for a specific system that involvedrak

charges to be constrained in one uniform dielectric mediu
Other energy functionals [11, 23, 24] involve relatively- ex

pensive vector function variables, requiring three-disienal

vectorial specification [11, 13]. In problems where the di- ¢
electric response can be modeled as piecewise uniform, o@"d (9) respectively,
functional reduces to a functional of the surface polaiarat

charge density, which requires only a two-dimensionalascal

specification and offers distinct numerical advantagesine
vector variables.

Our main result, Eq. (1), can be derived as follows. WePr \Prr
begin with the standard expression for the electrostatic erfXtremization/[w]

ergy written as a functional? [E] = L [¢(r) |E (r)[* d°r,

wheree is the dielectric permittivity. Next, following [28], we
include Gauss’s law as a constraint to this functional va t

Lagrange multiplieg:
I‘EI‘
FE0 =76~ [ o (v - (lﬁ ) - pr) P (3)

Note that we takeZ to depend parametrically om Using
e =14 4ry andP = xE, we introduceP in (3) to obtain

FBP.dl = o [Bwper [50Ee

—/ng(r) (V-¥+V-P(r)—p(r)>d3r.

(4)

Variations of (4) with respect th and¢ allow us to eliminate
all variables in favor oP, leading to

|I 1r|2 3 1//
= | —d’r+ pr — V- Pr) Gy

7 [P]
2Xx
X (per — V- Pyp) d®r' d>r.

m:

Itis evident from (7) and (8) that is the electrostatic poten-
tial. In addition, following (2), we can recast Eq. (9) as the
equality of two quantities: the polarization charge dgnsit
and the operatd®[w]. This equality is precisely the extremum
condition for.# [w]. Substitution of), P, andw from (7), (8),
into (6) leads to our central restié t
functional in (1).

We note that not all substitutions lead to our result.
For example, eliminatin@® and« from (6) using (7) and
(8) gives a functionall[w] with the functional density:
Gy (pr + Qp|w]) /2 — wrGr pr (Wpr — Oy [W]) /2. Upon
singles out the correct physical quantity,
but becomes a maximum at equilibrium. In faffy] is ex-
actly the negative of the functional in [14], neither of wic

h are energy functionals. Functionaf|w] and Iw| share a

common structure: the expression for the total electrizstat
energy (the first term in either functionals) is constrained
by the correct physical relation that must satisfy, namely
w — Qw] = 0. The only but crucial difference between these
two functionals is the choice of the Lagrange multiplierttha
enforces this constraint. In past attempts, the Lagrandg-mu
plier that leads to an energy functionalkefemained elusive.
Our current formulation finds the desired multiplier.

We now consider the application of our functional to the
problem of point charges in a system with piecewise-uniform
dielectrics. For the sake of brevity, we will restrict ouvss
to two uniform dielectrics, with different permittivities and
€2, separated by a single sharp interface. Extension to mul-
tiple dielectrics and interfaces is straightforward. Wsumse
that free charges reside only in the bulk of the dielectrice T
free charge density ip(r) = Zf.vzl ¢:0 (r —r;), whereg;
is the charge of thé" particle and\ is the total number of
charges. For this system, the induced charge density in the
bulk has the formwpyk(r) = (1/e(r) — 1) p(r), which leads
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to an effective charge density pfr)/e(r). Also, the gradient We apply our method to free charges in piecewise-uniform

of x vanishes everywhere except at the interface. Therefordielectrics, where the interfaces between the differetfibrm

several volume integrals in Eqg. (1) reduce to surface ilaisgr dielectrics are closed surfaces of finite area. For sintp|izie

and the original functiona# [w] is transformed to a functional only consider impenetrable boundaries such that eachrregio

of the surface induced charge density: has a fixed set of ions. We partition the surface boundaries
into M finite elements, and to each eleménive assign an

Flw] = 1 // pjfor_r/pr/d?’rd%' + 1// pr}’ér wsd?rd?s ~ average induced _charge d_ensity and a fict_itious masg..
2 ’ 2 ' For the system withV free ions, we can write a Lagrangian

1 oo H .
+s // ek, yuowd?sd®s, (10) for the extended system of + M particles as:

N =

oo oe oo

the interface, an&’, K, andK are, respectively, the effective

potentials of interac_tion between two free charges, beﬁyeee The first term is the kinetic energy of ions with masses:;
free charge and an induced charge, and between two inducgdy positionr;. The second is a fictitious kinetic energy for

M
. 1 .
mir? + ; iukwﬁ — Flwk; ;| — Hr;]. (13)

N
wherew(s) is the induced charge density at the positioon L= Z
=1

charges. These effective interactions are given by: the surface induced charge density. The electrostatimpate
oo 1 1 _ 1 1 — 1 energy of the system computed by using our functional con-
K, =—Grp + —Grp + —Grp — stitutes the third term. And the final term contains a set of
e L truncated Lennard-Jones potentials to model the hardefore
Eo_GTemn Gsr — (26 — 1) Gr s n 2Gr s the particles and the impenetrability of the surfaces.
s €r ns €r €r Starting from a point in the extended configuration space,

22 = = we generate its dynamics via standard MD technique, usin
Koo = em(em —1)Gsg = (26m = 1) Gs + Gaw. (11) 0 gequations of |}r/1otion derived from the Lagrangqlarhor ’
Heree,, = (e1 + €2)/2 is the permittivity at the interface and the ions and the fictitious induced charge values. To simu-
= late the behavior of the physical system at finite tempegatur
T, we couple the augmented system to a set oféNdeover
thermostats. The ions couple to a thermostat at temperature
T, while the induced charge values couple to one at much
o, . . S lower temperaturé&;. This allows the evaluated energy of the
ab = €4 // - VuGau Guy ity - VyGy b d7ud”v, physical system to be close to its thermal equilibrium vélye
(12) limiting the contribution of the fictitious kinetic energ¥his
two-temperature approach is a standard feature of CPMD [29—
whereeg = |ea — €1]/47 is the permittivity jump at the in- 31]. The masses of the induced charge degrees of freedom are
terface,a, b are arbitrary position vectors, v are position chosen so as to make their energy contribution small. In-prac
vectors of arbitrary interfacial points, ands the unit normal tice, we choose these masses to be proportional to the dreas o
to the interface taken to point in the direction of incregsin the finite elements, and the proportionality constant isseno
permittivity. to optimize the stability of the simulation. Another feaaf
In addition to providing a complete reformulation of elec- the system we simulate is that, as a result of Gauss’s law, the
trostatics in heterogeneous media, our formalism has imimednet induced charge at each interface is a constant. In our sim
ate applications to important practical problems. Sifte] ulations, we choose to directly enforce this constrainbahe
is an energy functional, it can be used for simulating freestep via the SHAKE-RATTLE routine [32].
charges in heterogeneous media which, as described above We have used the CPMD method outlined above to simu-
are basic models for phenomena in both biological and synlate ions near a spherical interface separating media fefrdif
thetic settings. The simplest simulation schemes [14, @6] f ent permittivities. The simulations have been carried out f
these systems require, in some way, the solution of the exrarious values of permittivities, ion concentrations amuva-
tremum conditionw — Q[w] = 0, at each step. However, lencies. As a test case, we considered a model for charged col
when an energy functional is available, new approaches areidal dispersions, where mobile charges are present in onl
possible, such as the use of CPMD method [21]. In this apene of the two dielectrics. We obtained results that match
proach.w is treated as a dynamical variable and is assignethose previously published [15, 20]. In this Letter, we fecu
a mass. The dynamic equations for the system follow from @n a much less explored problem of ions presemhiithsides
Lagrangian that contains an additional kinetic energy tierm  of the spherical interface. This system can be considerad as
w. The kinetic term is constructed so thatemains close to model for a liquid-liquid emulsion droplet in the presende o
the exact polarization charge distribution at all timesotimer ~ an electrolyte [33, 34]. We consider the case where the ions
words, we replace the expensive solution of the Poisson-equao not cross the interface, just like in the experiments 6f.[3
tion at each simulation step with am-the-flycomputation of We model the ions as repulsive Lennard-Jones (LJ) spheres
the polarization effects. of diameters = 0.357 nm. The spherical interface of radius

functionsG andG are defined as:

éa,b = 6d/CVYa.,u ﬁu . quu,b dzu

Q
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0] for all concentrations, reach a constant value in the bulk on
either side but show interesting features near the interfan

the side having the higher value of permittivity, the ion den

sity is depleted near the interface, which is largely theltes

of the repulsion due to the induced surface charge. The deple

tion is monotonic and gets more pronounced for higher values

of ¢in. On the other hand, in the exterior, lower-permittivity

B dielectric, ions prefer to accumulate near the interfaee (s-

N set in Fig. 1). We also see that ionic profiles on this side of

the interface are non-monotonic. This is due to a combinatio

0.021 !

Cn=00M —a—

| ¢n=03M —o—

| | en=09M of Coulombic depletion near hard wall [36, 37] and attraetiv

0 L : ; surface polarization charge effects. We further obsera¢ th
6 8 10 12 14 . . . .

/o increasing the internal salt concentration enhances tbe-ac

mulation of external ions near the interface. Several of¢he
FIG. 1. lonic density profiles for different concentratimisnonova-  features have been previously observed for planar intesfac
lent electrolyte inside the dielectric sphere. The outsiéconcen-  [16] and attributed generally to the same basic reasons.
tration is held fixed at 0.3 M for all curves. The inset showes dle- We have presented the solution to the long-standing prob-
cumulation of ions near the interface on the lower perniijtigide. lem of providing a true free energy functional for electatst

The dashed line in the middle shows the position of the iaterf ics that emplovs the polarization charae density as thevari
On the left side we sketch our model for the liquid-liquid dsion ploy P 9 Y

droplet in the presence of a monovalent electrolyte (notades. tional field._ This formulation _hf_;\s many app_licatio_ns, and we
have used it to develop an efficient CPMD simulation for a set

of point charges present in two dielectric media. The advan-

a = 100 separates the two media: the interior dielectric hagages associated with dynamically optimizing our function
permittivity e;, = 80, while the exterior dielectric has per- in conjunction with the reduction in dimensionality acteev
mittivity eoue = 35. The whole system of ions and dielectric by replacing the polarization vectors with induced surface
media is taken to be in a spherical simulation cell of diametecharges paves way for substantial improvements in our abil-
b = 200 such that the centers of the two spheres coincideiy to simulate charges in heterogeneous media. As the func-
see the sketch in Fig. 1. Both the interface and the simulatiotional is general for linear media, simulation approaches d
cell boundary are modeled as repulsive LJ walls. We consideived from it can be applied to many other systems, such as
monovalent electrolyte (1:1) & = 298 K and ciy (cou) de-  those with arbitrary interface shapes or moving boundaries
note the salt concentrations inside (outside) the spHerica ~ V.J. thanks R. Sknepnek, P. K. Jha, J. Zwanikken, and G. .
terface. The interface is discretized with neakly = 2000  Guerrero-Garcia for valuable discussions. The authanskth
points, and the parameters associated with the CPMD simuld¥. Kung for numerous comments on the manuscript. V.J. and
tion are: A = 0.001, puy, ~ 5 — 10,75 = 0.0017". Here,A is M.O.C were funded by the DDR&E and the AFOSR under
the simulation timestep and these values are given in L3 unitAward No. FA9550-10-1-0167 and F.S. was funded by the
(energy:kpT, length:o). NSF grant No. DMR-0805330.

Our simulation results pass two tests of stability and accu-
racy. We have analyzed the energy of the simulated system as
awhole as well as the energies of its subsystems. Fluchsatio
in the total energy of the physical system were found to be 50
times smaller than those in the physical kinetic energylymp
ing good energy conservation. Also, the energy of the ficti-
tious kinetic modes was kept very close to zero at all times.
Our second test relates to the effectiveness of our scheme to
reproduce the correct polarization charge distributiotred-
ular intervals during the course of the simulation of a numbe
of specific cases, we collected and stored the ion coordinate
and surface charge densities. Then, we carried out an oydina
minimization of the functional to determine the exact ineldic
density, and compared it to the distributions obtained & th
simulation. Ouron-the-flymethod results were within 2% of
those obtained with direct minimization.

Our simulations of the 1:1 electrolyte lead to the density
profiles shown in Fig. 1. We consider different values:gf
while maintainingeo, at 0.3 M, thus conducting a study sim-
ilar in spirit to the experiment in [35]. The ion distributis,
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