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Abstract

The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form

of a traveling flat-wave, a process driven by rotating internal flagella. We study B. burgdorferi ’s

swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of

the cell are then determined from the balance between elastic and resistive forces and moments.

We find that planar, traveling waves only exist when the flagella are effectively anchored at both

ends of the bacterium and that these traveling flat-waves rotate as they undulate. The model

predicts how the undulation frequency is related to the torque from the flagellar motors and how

the stiffness of the cell body and flagella affect the undulations and morphology.
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The spirochetes are a unique group of motile bacteria that are notable for their long, thin,

planar wave-like or helical morphologies [1]. In order to move, the spirochetes undulate or

rotate their cell body, as opposed to rotating external organelles, such as the ubiquitous

helical bacterial flagellum. The spirochetes do still use flagella to move; however, spiro-

chetal flagella are encased in the periplasm of the cell, which is the narrow space (∼30 nm)

between the inner and outer membranes [2]. Rotation of the flagella in this space causes the

rotations and undulations of the cell body that drive the movement of these cells through

their environments.

Here we focus on Borrelia burgdorferi, the causative agent of Lyme disease, the most

prevalent vector-borne illness in the United States [3]. During its enzootic cycle, B. burgdor-

feri swims through a myriad of viscous fluids and polymeric environments, such as blood

and the extracellular matrix [4, 5]. Unlike other bacteria whose motility would be inhibited

in these environments, these spirochetes maneuver through them by undulating the entire

∼10 µm length of their ∼0.3 µm diameter bodies as a planar, traveling wave [6, 7]. In

B. burgdorferi, there are 7 to 11 flagella attached to flagellar motors near each end of the

bacterium; the flagella wrap inward down the length of the cell body and are long enough

to overlap at the cell middle with flagella emanating from the other end [8, 9]. Because

the flagella are encased in the periplasm, rotation of the flagella causes the cell body to

undulate, which, in turn, produces the force that propels the cell [6, 9](Fig. 1a).

The preceding explanation, though, is deceptive; the physics by which rotation of helical

flagella in the periplasmic space produces the roughly planar traveling waves of the cell

body remains unclear. In order for the flagella to reside in the periplasmic space, they

must bend. The elastic forces required to bend the flagella cause the cell body to bend

into the characteristic flat-wave shape of B. burgdorferi, via Newton’s third law [10]. When

the flagella are rotated, they must continually deform, and the force and torque balance

between the flagella and the cell must conspire to produce traveling waves along the cell

body. In this Letter, we examine the physics by which flagellar rotation produces these

periodic undulations of the cell body. Our work is similar to previous work on Leptospira

[12]; however, we take into account the finite size of the cell radius and a more complete

description of the resistive forces between the cell body and flagella. While we focus on the

swimming dynamics of B. burgdorferi, it is likely that our results are generally applicable to

the physics of spirochete locomotion, and specifically to Treponema pallidum, the spirochete
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that causes syphilis, which also has a flat-wave morphology [15].

In order to construct a dynamic model for the swimming motility of B. burgdorferi, we

treat the cell body and periplasmic flagella as elastic filaments. The flagella in B. burgdorferi

form a ribbon-like structure that is localized circumferentially in the periplasm [2]. There-
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FIG. 1. (a) Time course of the swimming of B. burgdorferi. Over the 0.1 s shown here, the

cell undulates slightly more than half a period; i.e., the frequency is ω ∼ 10π s−1. The cell has

wavelength λ ∼ 3.0 µm and amplitude A ∼ 1.0 µm. Over this 0.1 s, the cell moves slightly up the

page, with a swimming speed that is proportional to A2ω/λ [6, 13, 14]. (b) The periplasmic flagella

(dark gray) are constrained to lie on the surface of the cell body (light gray). Rotation of the flagella

produces rotation and undulation of the cell body. We use orthonormal triads at each point along

the centerlines of the flagella and cell body to define the local orientations of these filamentary

objects. For example, the periplasmic flagella are located in the direction − sinαŷ + cosαẑ from

the centerline of the cell body, where α is the angle of rotation with respect to ŷ. See text for

further details.
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fore, we further assume that the flagella can be treated as a single elastic filament, as has

been done previously to describe the static conformation of B. burgdorferi [10]. The shape

of the cell body and flagella are then defined by the positions of their centerlines, rc and rf ,

respectively, and we define a local, orthonormal triad for the cell body [ê1,ê2,ê3], where ê3

is the tangent vector, and ê1 points to material points on the surface of the cell body, and

a similar orthonormal triad [ε̂1,ε̂2,ε̂3] for the flagella (Fig. 1b). The strain vectors for the

cell body and flagella, Ω and ̟, respectively, are related to the spatial derivatives of the

orthonormal triads as ∂êi
∂s

= Ω× êi and
∂ε̂i
∂s

= ̟× ε̂i, where i = 1, 2, 3. Because the flagella

reside in the periplasmic space, their position can be written in terms of the centerline of

the cell body, rf = rc + ap̂1, where a is the radius of the cell body and p̂1 points from the

centerline of the cell body to the flagella (Fig. 1b).

The amplitude of the shape of B. burgdorferi is smaller than the wavelength. We, there-

fore, consider the small amplitude dynamics of a cell aligned predominantly with the x-axis,

rc = xx̂+y(x)ŷ+z(x)ẑ. (This approximation is not entirely justified as the ratio 2πA/λ ∼ 1.

Therefore, the results of our model may not quantitatively match observations of B. burgdor-

feri, but we expect they will still capture the dynamics qualitatively.) The location of the

flagella can then be defined by the angle with respect to the y-axis, α(x) (Fig. 1b). We also

define the angles φ and β which describe the rotation of the orthonormal triads about the

tangent vectors of the cell body and flagella, respectively (Fig. 1b). The twist densities are

then Ω3 ≈ ∂β/∂x and ̟3 ≈ ∂φ/∂x.

In mutants lacking flagella, the equilibrium shape of B. burgdorferi is straight; purified

flagella are preferentially helical with preferred curvature κ0 ∼ 1.5 µm−1 and torsion τ0 ∼ 1.2

µm−1 [10]. Treating the cell body and flagella as linearly elastic filaments, the restoring

moments for these filaments are related to the strain vectors as

Mc = AcΩ1ê1 + AcΩ2ê2 + CcΩ3ê3 , (1)

Mf = Af(̟1 − κ0)ε̂1 + Af̟2ε̂2 + Cf (̟3 − τ0)ε̂3 , (2)

where Ac and Af are the bending moduli and Cc and Cf are the twist moduli for the cell

body and periplasmic flagella, respectively. For simplicity, we assume that Cf = Af and

Cc = Ac [16].

The dynamics of the cell body and flagella are defined through force and moment balance

equations that equate the elastic restoring forces to the resistive forces. Movement of the
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cell body through the external fluid is resisted by fluid drag, which is modeled here using

resistive force theory [17]. In the small amplitude approximation, we need only consider

movements perpendicular to the tangent vector of the cell body which are resisted by a

force proportional to the velocity with drag coefficient ζ⊥ ∼ 4πη, where η is the viscosity

of the fluid. Rotation of the cell body about its tangent vector experiences a resistive

torque proportional to ∂φ/∂t, with rotational drag coefficient ζr. In addition to these forces

and torques from the external fluid, movement of the flagella within the periplasmic space

also produces resistive forces and torques. Recently, Yang et al. showed that rotation of

the periplasmic flagella with respect to the cell body at speed produces a resistive force

proportional to the speed ωu = dβ/dt−dα/dt, and the resistive force is likely negligible [18].

Similarly, they showed that translation of the flagella in the periplasm produced a resistive

force, with negligible torque. We define the drag coefficients for rotation and translation of

the flagella to be ζβ and ζα. The force and moment balance equations are then [16]

dFc

dx
+K = ζ⊥

(

dy

dt
ŷ +

dz

dt
ẑ

)

− ζαa

(

dα

dt
−

dφ

dt

)

p̂2 , (3)

dMc

dx
+ ê3 × Fc =

(

ζr
dφ

dt
+ ζαa

2

(

dφ

dt
−

dα

dt

))

ê3 , (4)

dFf

dx
−K = ζαa

(

dα

dt
−

dφ

dt

)

p̂2 , (5)

dMf

dx
+ ε̂3 × Ff = ζβ

(

dβ

dt
−

dα

dt

)

ε̂3 , (6)

where Fc and Ff are the forces on the cell body and flagella, respectively, and p̂2 = x̂× p̂1.

The normal forces between the flagella and the cell body, K, point in the direction −p̂1.

To simulate the dynamics of B. burgdorferi, we solved Eqs. (3)–(6) using a fourth-order,

finite-difference spatial discretization and a semi-implicit time stepping routine. We used a

total cell length of 10 µm on a grid of 100 nodes with a time step of 10−6s.

We implement free boundary conditions at both ends of the bacterium, such that there

is no total applied force or moment. Thus, Fc + Ff = 0 and Mc + Mf = 0. At x = 0

the flagella are anchored into flagellar motors via the flexible hook [19], which redirects

the torque from the flagellar motor to be along the tangent vector of the flagellum but is

assumed to provide no torque along the direction of p̂1. Therefore, our boundary conditions

at x = 0 are α − φ = 0, Mf · p̂1 = 0, and Mf · x̂ = τ . At the other end of the bacterium

(x = L), we assume torque-free conditions Mf · x̂ = 0. In addition, we either consider that
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the flagella are long enough to overlap in the center, in which case α−φ is constant, or zero

force on the flagella in the p̂2 direction, Ff · p̂2 = 0.

Using this model, we address the question of whether this physics will produce planar,

traveling waves. In the absence of applied torque, we find static flat-wave morphologies, as

in [10]. Starting from this equilibrium shape, we consider the dynamics when the flagellar

motors exert torque on the flagella. We begin by considering that the flagella are free at

x = L, which represents that the flagella from one end do not overlap with flagella from

the other end of the bacterium. We further consider that the flagellar motor can rotate in

either a clockwise or counter clockwise sense (i.e., the torque from the motor can either be

positive or negative) [20]. For both situations we considered a range of cell body and flagellar

bending moduli around the biologically measured values (10-80 pN µm2) [10]. Because the

flagella are free at one end, they can readily move and change their circumferential position

with respect to the cell body, which drives the cell shape away from a flat wave. For

positive torques, we find that the cell body flips into a rotating, helical morphology (Fig.

2a). For negative torques, the cell body converts into a non-planar undulating and rotating

morphology (Fig. 2b). While either of these torques produce cell body undulations or

rotation, neither produces planar, traveling waves. For the case where the flagellar ribbon

extends from end to end of the bacterium, we find planar, traveling wave solutions for

torques in either direction (Fig. 2c,d). The traveling-wave undulates with the rotational

speed of the flagella, ωu. In addition, we also find that the cell body rotates with frequency

ωr =
1

2
(dβ/dt+ dα/dt). This rotation is observed experimentally [6] (see also Fig. 1a).

The fact that planar, traveling waves require the flagella to be effectively anchored at both

ends of the cell suggests that it is important that the length of the flagella in B. burgdorferi

be long enough to overlap with flagella from the opposite end. As anchoring at both ends

seems to be the physiologically relevant scenario, we only consider this case further.

Of the model parameters, the ones that are least known are the flagellar drag coefficients,

ζα and ζβ. Therefore, we explored how variations in these parameters affected the dynamics.

We found that variations of ζα between 10−1 and 10−3 produced only small decreases in the

undulation frequency for positive torque and negative torque and did not noticeably affect

cell shape. Variations of ζβ between 10−4 and 10−6 produced a ∼ 9 fold increase in the

bacterium’s undulation frequency for positive torque conditions and a ∼ 5 fold increase

under negative torque conditions.
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FIG. 2. Snapshots of the simulated dynamics of B. burgdorferi. Simulations were run for a total

time of 1–3 s with a ∼ 0.15 µm, Af = 20 pN µm2 and Ac = 10 pN µm2. (a,b) When the flagella

are anchored only at a single end of the bacterium, traveling, flat-waves are not observed for either

positive or negative torques, respectively. (c,d) When the flagella are anchored at both ends of

the bacterium, planar, traveling waves result for either positive or negative torques, respectively.

Bottom panels show an end-on view of the cases where the flagella are anchored at both ends,

which highlights the rotation of the flat-wave shape.

We next looked at how the undulation and rotational frequencies depended on the torque

from the flagellar motor. Because the dynamics are highly dissipative, we expected that

the undulation frequency would vary linearly with the applied torque. While we found this

linear relationship to hold at |τ | > 0.4 pN µm, at low torques the undulation frequency was

near zero (Fig. 3). In this low torque regime, the entire cell rotates without undulating. In

effect, the applied torque proudces crankshafting motions of the flagellum [11]. At larger

torques crankshafting (rotation) and speedometer cable motion (undulation) occur [11].
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Finally, if the preferred curvature and torsion of the periplasmic flagella are known,

then the static shape of B. burgdorferi only depends on the ratio of the flagellar bending

modulus to the bending modulus of the cell cylinder, Af/Ac [10]. We, therefore, examined

the effect of this ratio on the dynamics of the flat-wave undulation. We began by varying

Af with Ac held fixed at 10 pN µm2. For positive or negative torques, the magnitude of

the undulation frequency decreased with increases in Af/Ac (Fig. 4). We attribute this

decrease in frequency to the fact that as the flagella become more stiff, the amplitude of

the flat-wave shape increases [10]. Since the flagellar motor is a roughly constant torque
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FIG. 3. Flagellar rotational and undulatory frequencies as a function of the torque from the

flagellar motor. At low torque, the undulation frequency is near zero, and the cell rotates without

undulating. At torques |τ | > 0.4 pN µm, the bacterium swims by undulating and rotating.
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motor [19], balancing the power input from the flagellar motor with the power dissipated by

the cell body undulations, we expect that ω ∝ τ/A2, which is consistent with our findings.

We then varied Ac holding Af fixed at 20 pN µm2. For this case, we observed a decrease in

the frequency when the flagellar motor torque was negative and the bending moduli ratio

was small; however at large values of the ratio, the undulation frequency dropped to zero,

thus indicating the presence of crankshaft motion over speedometer cable motion (Fig. 3).

For all of these simulations, we found that there was less than a 2% − 8% increase in the

amplitude between positive and negative torques (Fig. 4 insets). Overall, our simulations

provide the best agreement with the experimentally observed morphology and frequency

when Af/Ac ≈ 2.

In this Letter, we developed a model for the physics of the swimming dynamics of B.

burgdorferi. This model reproduces the bacterium’s planar, traveling wave, but only if the

periplasmic flagella are effectively anchored at both ends of the cell, which may explain

why the flagella of B. burgdorferi are long enough to overlap at the cell middle. Our model

predicts that at low torque the cell rotates without undulating, and at higher torque the

cell rotates and undulates with distinct frequencies that are roughly linearly proportional to

the applied torque. In addition, we predict how these frequencies depend on cell stiffness.

Since cell speed is proportional to the undulation frequency [13, 14], our results offer testable

predictions for how cell speed is affected by mutations or chemical perturbations that affect

cell or flagellar stiffness. In addition, this model can serve as a basis for understanding

the complex physical interactions between the bacterium and its hosts [5] and should be

applicable to the study of other spirochetes, such as T. pallidum, the causative agent of

syphilis.
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