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Pressure-dependent, low temperature inelastic light (Raman) scattering measurements of KCuF3

show that applied pressure above P ∗ ∼ 7 kbar suppresses a previously observed structural phase
transition temperature to zero temperature in KCuF3, resulting in the development of a ω ∼ 0
fluctuational (quasielastic) response near T ∼ 0 K. This pressure-induced fluctuational response
— which we associate with slow fluctuations of the CuF6 octahedral orientation — is temperature
independent and exhibits a characteristic fluctuation rate that is much larger than the temperature,
consistent with quantum fluctuations of the CuF6 octahedra. A model of pseudospin-phonon cou-
pling provides a qualitative description of both the temperature- and pressure-dependent evolution
of the Raman spectra of KCuF3.

Frustrated magnetic systems in which conventional
magnetic order is suppressed down to T = 0 K are cur-
rently of great interest, because these systems can exhibit
exotic phenomena, e.g., off-diagonal long range order,[1]
and novel “liquid-like” ground states — such as orbital
[2] and spin liquids [3] — that quantum mechanically
fluctuate even at T = 0 K. Unfortunately, there are only
a few examples of real materals in which such fluctuating
ground states have been reported.[2,3]

In this paper, we report the first spectroscopic evi-
dence for a pressure-tuned quantum melting transition
in KCuF3 between a static structural phase to a phase
in which fluctuations persist even at T ∼ 0 K. While of-
ten considered a model system for orbital-ordering be-
havior,[4] the 3d9 perovskite KCuF3 is known to ex-
hibit a number of unusual properties that are still not
well understood,[5–16] including a highly anisotropic ex-
change coupling (Jc/Ja ∼ −100) [5] that results in 1D
antiferromagnetic Heisenberg spin dynamics above 40
K,[6–8] and a large disparity between the orbital or-
dering temperature (Too ∼ 800 K [9]) and the Néel
ordering temperature (TN ∼ 40 K [5,8]) that cannot
be explained by conventional superexchange models.[10]
Pressure-dependent, low temperature inelastic light (Ra-
man) scattering measurements reported here show that
applied pressure above P ∗ ∼ 7 kbar suppresses a previ-
ously observed structural phase transition temperature
[15, 16] in KCuF3 down to the lowest temperatures mea-
sured (T = 3 K), resulting in the development of a
quasielastic response that is indicative of fluctuational
dynamics near T ∼ 0 K. This pressure-induced fluctua-
tional response — which we associate with slow fluctu-
ations of the CuF6 octahedra between discrete orienta-
tions — is temperature independent and exhibits a char-
acteristic fluctuation rate that is much larger than the
temperature, similar to the behavior observed in “quan-
tum paraelectric” phases in SrTiO3 and KNaO3.[1] A
model of pseudospin-phonon coupling [17] — where the

pseudospin is identified with different CuF6 octahedral
rotational configurations — is qualitatively consistent
with our results on KCuF3 and shows that KCuF3 can
be systematically tuned with pressure and temperature
between the characteristic “soft-phonon” and “diffusive
mode” regimes predicted for strongly pseudospin-phonon
coupled systems.[17]

Single crystal samples of KCuF3 were grown by an
aqueous solution precipitation method described previ-
ously.[18] Samples were characterized with magnetic sus-
ceptibility and X-ray diffraction measurements, and the
results obtained are in good agreement with previous re-
sults.[6,7,19] Low temperature, pressure-dependent Ra-
man scattering measurements — using liquid argon as
the quasihydrostatic pressure medium — were performed
using the 6471 Å line from a krypton laser and a SiC- or
diamond-anvil cell that fits in a flow-through helium cryo-
stat, allowing simultaneous in situ control of the sample
temperature (T > 3 K) and pressure (P < 100 kbar).

Fig. 1 summarizes the temperature-dependence (P =
0) of some of the key phonon modes in KCuF3,[16,20]
showing evidence for a structural phase transition in
KCuF3 at T = 50 K. In particular, Figs. 1 (a) and (b)
show that the B1g-symmetry phonon near 72 cm−1 ex-
hibits a roughly 10-fold decrease in linewidth (FWHM)
and a 20% decrease in energy (“softening”) with decreas-
ing temperature (Fig. 1), consistent with previous evi-
dence for thermally driven structural fluctuations that
persist over a broad range of temperatures between TN
(=40 K) and 300 K.[11–14,16] Fig. 1(b) also shows that
the B1g phonon frequency stabilizes at temperatures be-
low ∼ 50 K, concomitant with a splitting of the dou-
bly degenerate 260 cm−1Eg mode into two singly de-
generate modes at 260 cm−1 and 265 cm−1 (Figs 1 (c)
and (d)); this result provides evidence that the ther-
mally driven structural fluctuations in KCuF3 are ar-
rested by a tetragonal-orthorhombic structural distortion
that locks the CuF6 octahedral tilt orientations into a



0 50 100 150 200 250
255

258

261

264

267

270

E
n
e
rg

y
 S

h
if
t 
(c

m
-1
)

 

 

240 255 270 285

40K

20K

70K

210K

150K

50K

 

 

In
te

n
s
it
y
 (

a
rb

.u
n

it
s
)

3K

(a) 

(c) 

Eg 

Eg 

Temperature (K) 

(d) 

0 50 100 150 200 250

69

72

75

78

81

E
n
e
rg

y
 S

h
if
t 
(c

m
-1
)

-2

0

2

4

6

8

L
in

e
w

id
th

 (c
m

-1)

 

 

B1g 
(b) 

Temperature (K) 

Energy Shift (cm-1) 

Energy Shift (cm-1) 

0.15 0.30 0.45 0.60

0.4

0.5

0.6

0.7

 

 

ω
/ω

o
 

ϒ = 10ωo 

(T-Tc)/Tc 

70 80 90 100

40K

150K

190K

230K

70K

110K

20K 
In

te
n

s
it
y
 (

a
rb

. 
u
n

it
s
)

 

 

3K

B1g 

FIG. 1. (a) Temperature dependence of the B1g symmetry
phonon mode in KCuF3. All spectra have the same y-axis
scale and have been offset in the y-axis direction for clarity.
Inset shows B1g phonon normal mode vibration of F− ions
(blue arrows), and dashed red arrow depicts octahedral ori-
entation (pseudospin). (b) Summary of the temperature de-
pendence of the peak energy (circles) and linewidth (squares)
of the B1g phonon mode. The inset shows the calculated
temperature dependence of the normalized peak frequencies,
ω/ωo, using Eq. 1 for the case γ = 10ωo, from [17]. (c) Tem-
perature dependence of the Eg symmetry phonon mode in
KCuF3. All spectra have the same y-axis scale and have been
offset in the y-axis direction for clarity. (d) Summary of the
temperature dependence of the peak energy of the Eg phonon
mode, showing a splitting of the mode at the tetragonal-to-
orthorhombic structural transition at T = 50 K.

static, ‘glassy’ configuration at T = 50 K. [16]

Evidence that CuF6 octahedral fluctuations in KCuF3

extend down to very low temperatures (∼ 50 K) —
and are interrupted only by a tetragonal-to-orthorhombic
distortion — suggests that KCuF3 is close to a quan-
tum critical point (QCP) at which the fluctuational
regime extends down to T = 0 K. Hydrostatic pres-
sure has been shown to reduce octahedral distor-
tions in perovskite materials such as (La,Ba)2CuO4,[21]
Ca2RuO4,[22] Ca3Ru2O7,[23] and LaMnO3;[24] there-
fore, pressure tuning offers a means of suppressing to T
= 0 K the low-temperature tetragonal-to-orthorhombic
distortion in KCuF3 that locks in CuF6 octahedral rota-
tions below T = 50 K (and P = 0). For this reason, we
performed low-temperature, pressure-dependent Raman
scattering measurements on KCuF3 in an effort to induce
and study “quantum melting” between T ∼ 0 static and
fluctuational regimes in KCuF3.

Fig. 2 shows the pressure-dependent Raman spectra
of KCuF3. The insets of Fig. 2 (a) and (b) show that
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FIG. 2. (a) Pressure dependence of Raman spectra of KCuF3

at T = 3 K. The arrow indicates a frequency correspond-
ing to 40 kBT . All spectra have the same y-axis scale and
have been offset in the y-axis direction for clarity. Dashed
lines indicate the common baseline for all the spectra. The
inset illustrates the pressure dependence of the Eg phonon
mode at T = 3 K. (b) Pressure dependence of the integrated
quasielastic scattering response intensity, I(P ), at T = 3 K
for three different samples of KCuF3. The inset shows the
pressure dependence of the peak energies of the Eg phonon
mode at 3 K for four different samples, showing evidence for
an orthorhombic-to-tetragonal transition near P ∗ = 7 kbar.
(c) Calculated normalized phonon frequency, ω/ωo, (black cir-
cles) and quasielastic scattering response integrated intensity
(blue squares) as a function of ωo/γ, using Eq. 1 from [17]. (d)
Temperature dependence of quasielastic scattering response of
KCuF3 at P = 42.3 kbar. All spectra have the same y-axis
scale and all spectra have been shifted by the same amount
in the -y direction to emphasize the quasielastic contribution
to the spectra. The low energy (55 cm−1) cutoff in Figs. (a)
and (d) reflects the low energy limit of the spectral window
defined by our spectrometer.

the splitting of the ∼ 260 cm−1 Eg phonon mode dis-
appears above P ∗ ∼ 7 kbar, revealing a pressure in-
duced orthorhombic-to-tetragonal transition. Figs. 2 (a)
and (b) also show that the pressure-induced structural
transition near P ∗ ∼ 7 kbar (at T = 3 K) is followed
by the development with increasing pressure of a broad
quasielastic response centered at ω=0; this quasielastic
scattering response is indicative of fluctuational behav-
ior at low temperatures and high pressures (P > 7 kbar)
in KCuF3, and can be qualitatively described by a simple
relaxational response function χ′′(ω) ∼ ωγ

ω2+γ2 ,[25] which
has a maximum value at the characteristic fluctuation
rate γ. Because the maximum value in the quasielas-
tic scattering (i.e., γ) doesn’t change appreciably with



pressure (see Fig. 2(a)), the increasing quasielastic scat-
tering with pressure in Fig. 2(b) is believed to primar-
ily reflect an increase in the overall amplitude of the
quasielastic scattering response, for example due to a
systematic increase in the volume of fluctuating regions.
Similar fluctuational responses — albeit with very differ-
ent characteristic fluctuation rates — have been observed
to result from slow relaxational structural fluctuations in
SrTiO3 [26], LaAlO3 [27] and KMnF3 [28]. In particular,
a fluctuational (diffusive) neutron scattering response in
isostructural KMnF3 was also attributed to dynamic ro-
tations of MnF6 octahedra; these octahedral fluctuations
were shown to be highly correlated — via the shared F
ions — within the planes, but were shown to fluctuate
in an uncorrelated fashion between adjacent planes. [28]
Additionally, previous x-ray diffraction studies of KCuF3

[16] show that in-plane correlations between CuF6 octa-
hedra extend no further than ∼ 100 unit cells. Conse-
quently, the fluctuational response we observe could in-
volve interplane octahedral fluctuations and/or in-plane
fluctuations between correlated regions of order ∼ 1000
Å. Pressure-dependent x-ray diffraction measurements
are needed to distinguish between these possibilities.

Significantly, all the key spectroscopic features of our
temperature- and pressure- dependent Raman results on
KCuF3 — which are summarized in Fig. 3 — can be
qualitatively described by a coupled pseudospin-phonon
model [17] in which the normal mode vibrations of a
phonon are associated with a molecular group (i.e., the
CuF6 octahedra in KCuF3) that fluctuates between dis-
crete configurations and whose dynamics can be de-
scribed using a pseudospin representation. This coupled
pseudospin-phonon model provides a qualitative descrip-
tion of how fluctuations in CuF6 octahedral orientation
influence phonon modes (e.g., the Eg and B1g phonons)
associated with the fluorine ions in KCuF3. [29] The
Hamiltonian for the coupled pseudospin-phonon model
is given by, [17]

H =
1

2

∑
K

{
P (k)P ∗ (k) + ω2

o(k)Q(k)Q∗(k)
}

−1

2

∑
i,j

Jijσiσj +
∑
k,j

ω0(k)√
N

g(k)Q(k)σje
ik·rj

where Q is the normal coordinate of the phonon, P is
the conjugate coordinate of Q, σi is the pseudospin, Jij is
the pair interaction between the ith and jth pseudospins,
g is the pseudospin-phonon coupling constant, and ωo
is the bare phonon frequency. The identification of the
pseudospin with discrete CuF6 octahedral configurations
is supported by x-ray diffraction results on KCuF3 show-
ing that discrete CuF6 octahedral orientations lock into
a glassy configuration below the structural phase tran-
sition.[16] The coupled phonon response function associ-
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FIG. 3. PT phase diagram for the CuF6 octahedral fluctu-
ations in KCuF3. Horizontal axes represent the temperature
and pressure. The contour plot on the horizontal plane repre-
sents the measured fluctuational response integrated intensity,
with dark green = 2000 counts and white = 0 counts, based
on temperature sweeps at the following pressures: P = 0, 5,
13, 18.7, 27, 35, 42 kbar. The vertical axis shows the mode
frequency, with both the ∼ 79 cm−1 B1g and ∼ 261 cm−1 Eg

phonon frequencies shown as functions of temperature (filled
red and green circles, respectively) and pressure (open red and
green circles, respectively). Filled squares illustrate the char-
acteristic energy Γ of the fluctuational response. Diagrams on
top depict (left) thermally activated hopping between CuF6

configurations in the fast-fluctuating regime of KCuF3, and
(right) the quantum tunneling between CuF6 configurations
in the pressure-tuned slow fluctuating regime.

ated with this Hamiltonian is:[17]

Φ =
2γkBT

(
g
γJ′

)2
[
ω2 − ω2

o

]2
+ ω2Γ2

1

(1)

where γ is the pseudospin (CuF6 octahedral orientation)
fluctuation rate, J′ = kBT − J is the renormalized ex-

change coupling, ωo

{
= ωo

[
1−

(
g2/J′

)]1/2}
is the renor-

malized phonon frequency, and Γ1

{
=
(
ω2 − ω2

o

)
/γJ′

}
is

the phonon damping parameter.
The coupled pseudospin-phonon model predicts two

regimes of behavior that are qualitatively consistent with
the observed pressure- and temperature- dependent Ra-
man results observed in KCuF3:

“Soft phonon” regime, γ � ωo — When the fluctua-
tion rate (γ) of the pseudospin (CuF6 octahedral orien-
tation) is much faster than the phonon frequency (ωo),
i.e., for γ � ωo, this model predicts phonon mode soften-
ing as the temperature decreases towards the structural
phase transition (T → Tc),[17] as illustrated in the inset



of Fig. 1(b) for the case γ = 10ωo. This model pre-
diction is qualitatively consistent with the temperature-
dependent mode softening observed for the 50 cm−1 Eg
(not shown, see [16]) and 72 cm−1 B1g (see Figs. 1(a) and
(b)) rotational F− phonon modes in KCuF3, supporting
the conclusion [12, 16] that there is a thermally driven
fluctuational regime in KCuF3 in which thermal fluctua-
tions of the CuF6 octahedra occur on a faster timescale
than the Eg and B1g phonon frequencies to which they
are coupled.

“Diffusive mode” regime, γ ≤ ωo — By contrast, when
the fluctuation rate (γ) of the pseudospin (CuF6 octa-
hedral orientation) is comparable to or slower than the
phonon frequency (ωo), the coupled pseudospin-phonon
model (Eq. 1) [17] predicts a “diffusive mode” regime,
i.e., the development of a ω = 0 fluctuational response
(squares, Fig. 2(c)), and reduced phonon softening (filled
circles, Fig. 2(c)). This prediction matches the observed
pressure-induced quasielastic response (Fig. 2(a)) and
pressure-independent B1g mode frequency (Fig. 2(a) and
open green circles, Fig. 3) observed in KCuF3. Thus, the
pressure-dependent development of a quasielastic fluctu-
ational response at low temperatures in KCuF3 is con-
sistent with the onset of slow fluctuations (compared to
phonon frequencies) of the CuF6 octahedra, which re-
sult when the pressure-induced octahedral-to-tetragonal
distortion “unlocks” the glassy arrangement of CuF6 oc-
tahedral tilts.

The pressure results presented here offer evidence for
a pressure-tuned “quantum melting” transition near T ∼
0 in KCuF3 between a static configuration of the CuF6

octahedra to a phase in which the CuF6 octahedra are
slowly fluctuating on a timescale that is comparable to
or slower than the Eg and B1g phonon frequencies. Be-
cause the characteristic rate associated with these CuF6

fluctuations, γ ∼ 80 cm−1 (10 meV), is temperature in-
dependent and more than an order-of-magnitude larger
than the thermal energies, γ ∼ 40kBT (arrow in Fig.
2(a)), we propose that these low temperature, pressure-
induced fluctuations are primarily driven by zero-point
fluctuations (i.e., quantum tunneling) between different
wells in the free energy landscape (top right diagram in
Fig. 3). This interpretation suggests that the pressure-
induced “quantum melting” transition in KCuF3 is simi-
lar to the “rotational melting” transitions [1] to quantum
paraelectric phases in SrTiO3 and KTaO3 at low temper-
atures,[31] and in KH2PO4 (KDP) at high pressures.[32]

One outstanding issue concerns the role these octa-
hedral fluctuations play in disrupting magnetic order in
KCuF3. A connection between quantum structural (oc-
tahedral) fluctuations and the spin and/or orbital de-
gree of freedom might indicate that a pressure-induced
orbital/spin liquid state accompanies quantum fluctua-
tions of the octahedral orientations in KCuF3. To study
this important issue, pressure dependent magnetic mea-
surements are needed to test whether the pressure-tuned

onset of octahedral fluctuations is coupled with a sup-
pression of Néel order. Uniaxial pressure measurements
would also provide an interesting comparison to these
hydrostatic pressure studies,[1] by stabilizing the lower
symmetry, static configuration of KCuF3 and thereby fa-
voring the onset of magnetic/orbital order.
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