

CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Inelastic Light Scattering Measurements of a Pressure-Induced Quantum Liquid in KCuF_{3}

S. Yuan, M. Kim, J. T. Seeley, J. C. T. Lee, S. Lal, P. Abbamonte, and S. L. Cooper Phys. Rev. Lett. **109**, 217402 — Published 21 November 2012 DOI: [10.1103/PhysRevLett.109.217402](http://dx.doi.org/10.1103/PhysRevLett.109.217402)

Inelastic light scattering measurements of a pressure-induced quantum liquid in $KCuF₃$

S. Yuan,¹ M. Kim,¹ J. T. Seeley,¹ J.C.T. Lee,¹ S. Lal,^{1,2} P. Abbamonte,¹ and S.L. Cooper¹

 1 Department of Physics and Frederick Seitz Materials Research Laboratory,

University of Illinois, Urbana, Illinois 61801, USA

²Department of Physical Sciences, IISER-Kolkata,

Mohanpur campus, West Bengal - 741252, India

Pressure-dependent, low temperature inelastic light (Raman) scattering measurements of KCuF₃ show that applied pressure above $P^* \sim 7$ kbar suppresses a previously observed structural phase transition temperature to zero temperature in KCuF₃, resulting in the development of a $\omega \sim 0$ fluctuational (quasielastic) response near $T \sim 0$ K. This pressure-induced fluctuational response — which we associate with slow fluctuations of the CuF₆ octahedral orientation — is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, consistent with quantum fluctuations of the CuF_6 octahedra. A model of pseudospin-phonon coupling provides a qualitative description of both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF3.

Frustrated magnetic systems in which conventional magnetic order is suppressed down to $T = 0$ K are currently of great interest, because these systems can exhibit exotic phenomena, e.g., off-diagonal long range order,[1] and novel "liquid-like" ground states — such as orbital $[2]$ and spin liquids $[3]$ — that quantum mechanically fluctuate even at $T = 0$ K. Unfortunately, there are only a few examples of real materals in which such fluctuating ground states have been reported.[2,3]

In this paper, we report the first spectroscopic evidence for a pressure-tuned quantum melting transition in KCuF³ between a static structural phase to a phase in which fluctuations persist even at $T \sim 0$ K. While often considered a model system for orbital-ordering behavior, [4] the $3d^9$ perovskite KCuF₃ is known to exhibit a number of unusual properties that are still not well understood, [5–16] including a highly anisotropic exchange coupling $(J_c/J_a \sim -100)$ [5] that results in 1D antiferromagnetic Heisenberg spin dynamics above 40 K,[6–8] and a large disparity between the orbital ordering temperature ($T_{oo} \sim 800 \text{ K}$ [9]) and the N \acute{e} el ordering temperature $(T_N \sim 40 \text{ K} [5,8])$ that cannot be explained by conventional superexchange models.[10] Pressure-dependent, low temperature inelastic light (Raman) scattering measurements reported here show that applied pressure above $P^* \sim 7$ kbar suppresses a previously observed structural phase transition temperature [15, 16] in $KCuF_3$ down to the lowest temperatures measured $(T = 3 K)$, resulting in the development of a quasielastic response that is indicative of fluctuational dynamics near $T \sim 0$ K. This pressure-induced fluctuational response — which we associate with slow fluctuations of the CuF_6 octahedra between discrete orientations — is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, similar to the behavior observed in "quantum paraelectric" phases in $SrTiO₃$ and $KNaO₃.[1]$ A model of pseudospin-phonon coupling $[17]$ — where the

pseudospin is identified with different CuF⁶ octahedral rotational configurations — is qualitatively consistent with our results on $KCuF_3$ and shows that $KCuF_3$ can be systematically tuned with pressure and temperature between the characteristic "soft-phonon" and "diffusive mode" regimes predicted for strongly pseudospin-phonon coupled systems.[17]

Single crystal samples of $KCuF_3$ were grown by an aqueous solution precipitation method described previously.[18] Samples were characterized with magnetic susceptibility and X-ray diffraction measurements, and the results obtained are in good agreement with previous results.[6,7,19] Low temperature, pressure-dependent Raman scattering measurements — using liquid argon as the quasihydrostatic pressure medium — were performed using the 6471 \AA line from a krypton laser and a SiC- or diamond-anvil cell that fits in a flow-through helium cryostat, allowing simultaneous in situ control of the sample temperature $(T > 3 K)$ and pressure $(P < 100 kbar)$.

Fig. 1 summarizes the temperature-dependence ($P =$ 0) of some of the key phonon modes in $KCuF_3$, [16,20] showing evidence for a structural phase transition in $KCuF₃$ at $T = 50$ K. In particular, Figs. 1 (a) and (b) show that the B_{1g} -symmetry phonon near 72 cm⁻¹ exhibits a roughly 10-fold decrease in linewidth (FWHM) and a 20% decrease in energy ("softening") with decreasing temperature (Fig. 1), consistent with previous evidence for thermally driven structural fluctuations that persist over a broad range of temperatures between T_N $(=40 \text{ K})$ and 300 K.[11–14,16] Fig. 1(b) also shows that the B_{1g} phonon frequency stabilizes at temperatures below ∼ 50 K, concomitant with a splitting of the doubly degenerate 260 cm⁻¹ E_g mode into two singly degenerate modes at 260 cm⁻¹ and 265 cm⁻¹ (Figs 1 (c) and (d)); this result provides evidence that the thermally driven structural fluctuations in $KCuF_3$ are arrested by a tetragonal-orthorhombic structural distortion that locks the CuF_6 octahedral tilt orientations into a

FIG. 1. (a) Temperature dependence of the B_{1g} symmetry phonon mode in KCuF3. All spectra have the same y-axis scale and have been offset in the y-axis direction for clarity. Inset shows B_{1g} phonon normal mode vibration of F[−] ions (blue arrows), and dashed red arrow depicts octahedral orientation (pseudospin). (b) Summary of the temperature dependence of the peak energy (circles) and linewidth (squares) of the B_{1g} phonon mode. The inset shows the calculated temperature dependence of the normalized peak frequencies, ω/ω_o , using Eq. 1 for the case $\gamma = 10\omega_o$, from [17]. (c) Temperature dependence of the E_g symmetry phonon mode in KCuF3. All spectra have the same y-axis scale and have been offset in the y-axis direction for clarity. (d) Summary of the temperature dependence of the peak energy of the E_a phonon mode, showing a splitting of the mode at the tetragonal-toorthorhombic structural transition at $T = 50$ K.

static, 'glassy' configuration at $T = 50$ K. [16]

Evidence that CuF_6 octahedral fluctuations in $KCuF_3$ extend down to very low temperatures (~ 50 K) and are interrupted only by a tetragonal-to-orthorhombic $distortion$ — suggests that $KCuF_3$ is close to a quantum critical point (QCP) at which the fluctuational regime extends down to $T = 0$ K. Hydrostatic pressure has been shown to reduce octahedral distortions in perovskite materials such as $(La, Ba)₂CuO₄, [21]$ Ca_2RuO_4 , $[22] Ca_3Ru_2O_7$, $[23]$ and $LaMnO_3$; $[24]$ therefore, pressure tuning offers a means of suppressing to T $= 0$ K the low-temperature tetragonal-to-orthorhombic distortion in $KCuF_3$ that locks in CuF_6 octahedral rotations below $T = 50$ K (and $P = 0$). For this reason, we performed low-temperature, pressure-dependent Raman scattering measurements on $KCuF_3$ in an effort to induce and study "quantum melting" between $T \sim 0$ static and fluctuational regimes in KCuF3.

Fig. 2 shows the pressure-dependent Raman spectra of $KCuF_3$. The insets of Fig. 2 (a) and (b) show that

FIG. 2. (a) Pressure dependence of Raman spectra of KCuF³ at $T = 3$ K. The arrow indicates a frequency corresponding to 40 k_BT . All spectra have the same y-axis scale and have been offset in the y-axis direction for clarity. Dashed lines indicate the common baseline for all the spectra. The inset illustrates the pressure dependence of the E_g phonon mode at $T = 3$ K. (b) Pressure dependence of the integrated quasielastic scattering response intensity, $I(P)$, at $T = 3$ K for three different samples of KCuF3. The inset shows the pressure dependence of the peak energies of the E_g phonon mode at 3 K for four different samples, showing evidence for an orthorhombic-to-tetragonal transition near $P^* = 7$ kbar. (c) Calculated normalized phonon frequency, ω/ω_o , (black circles) and quasielastic scattering response integrated intensity (blue squares) as a function of ω_o/γ , using Eq. 1 from [17]. (d) Temperature dependence of quasielastic scattering response of KCuF₃ at $P = 42.3$ kbar. All spectra have the same y-axis scale and all spectra have been shifted by the same amount in the -y direction to emphasize the quasielastic contribution to the spectra. The low energy (55 cm^{-1}) cutoff in Figs. (a) and (d) reflects the low energy limit of the spectral window defined by our spectrometer.

the splitting of the ~ 260 cm⁻¹ E_g phonon mode disappears above $P^* \sim 7$ kbar, revealing a pressure induced orthorhombic-to-tetragonal transition. Figs. 2 (a) and (b) also show that the pressure-induced structural transition near $P^* \sim 7$ kbar (at $T = 3$ K) is followed by the development with increasing pressure of a broad quasielastic response centered at $\omega=0$; this quasielastic scattering response is indicative of fluctuational behavior at low temperatures and high pressures $(P > 7 \text{ kbar})$ in KCuF3, and can be qualitatively described by a simple relaxational response function $\chi''(\omega) \sim \frac{\omega \gamma}{\omega^2 + \gamma^2}$,[25] which has a maximum value at the characteristic fluctuation rate γ . Because the maximum value in the quasielastic scattering (i.e., γ) doesn't change appreciably with pressure (see Fig. $2(a)$), the increasing quasielastic scattering with pressure in Fig. 2(b) is believed to primarily reflect an increase in the overall amplitude of the quasielastic scattering response, for example due to a systematic increase in the volume of fluctuating regions. Similar fluctuational responses — albeit with very different characteristic fluctuation rates — have been observed to result from slow relaxational structural fluctuations in $SrTiO₃$ [26], LaAl $O₃$ [27] and KMnF₃ [28]. In particular, a fluctuational (diffusive) neutron scattering response in isostructural KMnF³ was also attributed to dynamic rotations of MnF_6 octahedra; these octahedral fluctuations were shown to be highly correlated — via the shared F ions — within the planes, but were shown to fluctuate in an uncorrelated fashion between adjacent planes. [28] Additionally, previous x-ray diffraction studies of KCuF³ [16] show that in-plane correlations between CuF_6 octahedra extend no further than ~ 100 unit cells. Consequently, the fluctuational response we observe could involve interplane octahedral fluctuations and/or in-plane fluctuations between correlated regions of order ~ 1000 A . Pressure-dependent x-ray diffraction measurements are needed to distinguish between these possibilities.

Significantly, all the key spectroscopic features of our temperature- and pressure- dependent Raman results on $KCuF_3$ — which are summarized in Fig. 3 — can be qualitatively described by a coupled pseudospin-phonon model [17] in which the normal mode vibrations of a phonon are associated with a molecular group (i.e., the $CuF₆ octahedra in KCuF₃$ that fluctuates between discrete configurations and whose dynamics can be described using a pseudospin representation. This coupled pseudospin-phonon model provides a qualitative description of how fluctuations in CuF_6 octahedral orientation influence phonon modes (e.g., the E_g and B_{1g} phonons) associated with the fluorine ions in $KCuF_3$. [29] The Hamiltonian for the coupled pseudospin-phonon model is given by, [17]

$$
H = \frac{1}{2} \sum_{K} \left\{ P(k) P^*(k) + \omega_o^2(k) Q(k) Q^*(k) \right\}
$$

$$
- \frac{1}{2} \sum_{i,j} J_{ij} \sigma_i \sigma_j + \sum_{k,j} \frac{\omega_0(k)}{\sqrt{N}} g(k) Q(k) \sigma_j e^{ik \cdot \tau_j}
$$

where Q is the normal coordinate of the phonon, P is the conjugate coordinate of Q, σ_i is the pseudospin, J_{ij} is the pair interaction between the ith and jth pseudospins, g is the pseudospin-phonon coupling constant, and ω_0 is the bare phonon frequency. The identification of the pseudospin with discrete $CuF₆$ octahedral configurations is supported by x-ray diffraction results on $KCuF_3$ showing that discrete CuF_6 octahedral orientations lock into a glassy configuration below the structural phase transition.[16] The coupled phonon response function associ-

FIG. 3. PT phase diagram for the CuF_6 octahedral fluctuations in KCuF3. Horizontal axes represent the temperature and pressure. The contour plot on the horizontal plane represents the measured fluctuational response integrated intensity, with dark green $= 2000$ counts and white $= 0$ counts, based on temperature sweeps at the following pressures: $P = 0, 5, \dots$ 13, 18.7, 27, 35, 42 kbar. The vertical axis shows the mode frequency, with both the ~ 79 cm⁻¹ B_{1g} and ~ 261 cm⁻¹ E_g phonon frequencies shown as functions of temperature (filled red and green circles, respectively) and pressure (open red and green circles, respectively). Filled squares illustrate the characteristic energy Γ of the fluctuational response. Diagrams on top depict (left) thermally activated hopping between CuF_6 configurations in the fast-fluctuating regime of KCuF3, and (right) the quantum tunneling between CuF_6 configurations in the pressure-tuned slow fluctuating regime.

ated with this Hamiltonian is:[17]

$$
\Phi = \frac{2\gamma k_B T \left(\frac{g}{\gamma J'}\right)^2}{\left[\omega^2 - \overline{\omega}_o^2\right]^2 + \omega^2 \Gamma_1^2}
$$
(1)

where γ is the pseudospin (CuF₆ octahedral orientation) fluctuation rate, $J' = k_B T - J$ is the renormalized exchange coupling, $\overline{\omega}_o\left\{=\omega_o\left[1-\left(g^2/J'\right)\right]^{1/2}\right\}$ is the renormalized phonon frequency, and Γ_1 {= $(\omega^2 - \omega_o^2) / \gamma J'$ } is the phonon damping parameter.

The coupled pseudospin-phonon model predicts two regimes of behavior that are qualitatively consistent with the observed pressure- and temperature- dependent Raman results observed in KCuF₃:

"Soft phonon" regime, $\gamma \gg \omega_o$ — When the fluctuation rate (γ) of the pseudospin (CuF₆ octahedral orientation) is much faster than the phonon frequency (ω_o) , i.e., for $\gamma \gg \omega_o$, this model predicts phonon mode softening as the temperature decreases towards the structural phase transition $(T \to T_c)$,[17] as illustrated in the inset of Fig. 1(b) for the case $\gamma = 10\omega_o$. This model prediction is qualitatively consistent with the temperaturedependent mode softening observed for the 50 cm⁻¹ E_q (not shown, see [16]) and 72 cm⁻¹ B_{1g} (see Figs. 1(a) and (b)) rotational F^- phonon modes in KCuF₃, supporting the conclusion [12, 16] that there is a thermally driven fluctuational regime in $KCuF_3$ in which thermal fluctuations of the $\rm CuF_6$ octahedra occur on a faster timescale than the E_g and B_{1g} phonon frequencies to which they are coupled.

"Diffusive mode" regime, $\gamma \leq \omega_o$ — By contrast, when the fluctuation rate (γ) of the pseudospin (CuF₆ octahedral orientation) is comparable to or slower than the phonon frequency (ω_o) , the coupled pseudospin-phonon model (Eq. 1) [17] predicts a "diffusive mode" regime, i.e., the development of a $\omega = 0$ fluctuational response (squares, Fig. $2(c)$), and reduced phonon softening (filled circles, Fig. 2(c)). This prediction matches the observed pressure-induced quasielastic response (Fig. $2(a)$) and pressure-independent B_{1g} mode frequency (Fig. 2(a) and open green circles, Fig. 3) observed in $KCuF_3$. Thus, the pressure-dependent development of a quasielastic fluctuational response at low temperatures in $KCuF_3$ is consistent with the onset of slow fluctuations (compared to phonon frequencies) of the CuF_6 octahedra, which result when the pressure-induced octahedral-to-tetragonal distortion "unlocks" the glassy arrangement of $CuF₆$ octahedral tilts.

The pressure results presented here offer evidence for a pressure-tuned "quantum melting" transition near T ∼ 0 in KCuF₃ between a static configuration of the CuF₆ octahedra to a phase in which the CuF_6 octahedra are slowly fluctuating on a timescale that is comparable to or slower than the E_g and B_{1g} phonon frequencies. Because the characteristic rate associated with these CuF_6 fluctuations, $\gamma \sim 80 \text{ cm}^{-1}$ (10 meV), is temperature independent and more than an order-of-magnitude larger than the thermal energies, $\gamma \sim 40k_BT$ (arrow in Fig. $2(a)$, we propose that these low temperature, pressureinduced fluctuations are primarily driven by zero-point fluctuations (i.e., quantum tunneling) between different wells in the free energy landscape (top right diagram in Fig. 3). This interpretation suggests that the pressureinduced "quantum melting" transition in $KCuF_3$ is similar to the "rotational melting" transitions [1] to quantum paraelectric phases in $SrTiO₃$ and $KTaO₃$ at low temperatures, [31] and in KH_2PO_4 (KDP) at high pressures. [32]

One outstanding issue concerns the role these octahedral fluctuations play in disrupting magnetic order in KCuF3. A connection between quantum structural (octahedral) fluctuations and the spin and/or orbital degree of freedom might indicate that a pressure-induced orbital/spin liquid state accompanies quantum fluctuations of the octahedral orientations in $KCuF_3$. To study this important issue, pressure dependent magnetic measurements are needed to test whether the pressure-tuned onset of octahedral fluctuations is coupled with a suppression of N´eel order. Uniaxial pressure measurements would also provide an interesting comparison to these hydrostatic pressure studies,[1] by stabilizing the lower symmetry, static configuration of $KCuF_3$ and thereby favoring the onset of magnetic/orbital order.

This material is based on work supported by the U.S. Department of Energy, Division of Materials Sciences, under Award No. DE-FG02-07ER46453, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign, and by the National Science Foundation under Grant NSF DMR 08- 56321 (M.K.). S. L. gratefully acknowledges financial support from the DST, Govt. of India through a Ramanujam Fellowship.

- [1] E. Tosatti and R. Maronak, Sol. St. Commun. 92, 167 (1994).
- [2] L.F. Feiner, A.M. Oles and J. Zaanen, Phys. Rev. Lett. 78, 2799 (1997).
- [3] B. Canals and C. Lacroix, Phys. Rev. Lett. 80, 2933 (1998); S. Nakatsuji et al., Phys. Rev. Lett. 96, 087204 (2006); N.P. Ong and R.J. Cava, Science 305, 52 (2004).
- [4] K.I. Kugel and D.I. Khomskii, Sov. Phys.-Usp. 25, 231 (1982).
- [5] S.K. Satija et al., Phys. Rev. B **21**, 2001 (1980).
- [6] A. Okazaki and Y. Suemune, J. Phys. Soc. Jpn. 16, 176 (1961).
- [7] M.T. Hutchings *et al.*, Phys. Rev **188**, 919 (1969).
- [8] B. Lake *et al.*, Nature Materials 4, 329 (2005).
- [9] L. Paolasini et al., Phys. Rev. Lett. **88**, 106403 (2002).
- [10] E. Pavarini, E. Koch and A.I. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008).
- [11] M. Hidaka, T. Eguchi and I. Yamada, J. Phys. Soc. Jpn. 67, 2488 (1998).
- [12] M.V. Eremin et al., Phys. Rev. Lett. **101**, 147601 (2008).
- [13] I. Yamada and N. Kato, J. Phys. Soc. Jpn. 63, 289 (1994) .
- [14] C. Mazzoli et al., J. Magn. Magn. Mater. 242, 935 (2002).
- [15] J. Deisenhofer *et al.*, Phys. Rev. Lett. **101**, 157406 (2008).
- [16] J. C. T. Lee *et al.*, Nature Physics 8, 63 (2012).
- [17] Y. Yamada, H. Takatera and D.L. Huber, J. Phys. Soc. Jpn. 36, 641 (1974).
- [18] K. Hirakawa and Y. Kurogi, Suppl. Prog. Theor. Phys. 46, 147 (1970).
- [19] K. Hirakawa and H. Miike, Phys. Lett. 45A, 79 (1973).
- [20] T. Ueda et al., Sol. St. Commun. 80, 801 (1991).
- [21] M. Hücker et al., Phys. Rev. Lett. 104 , 057004 (2010).
- [22] P. Steffens et al., Phys. Rev. B 72 , 094104 (2005).
- [23] C. S. Snow et al., Phys. Rev. Lett. **89**, 226401 (2002).
- [24] I. Loa et al., Phys. Rev. Lett. 87, 125501 (2001).
- [25] The simple relaxational response function assumes a frequency-independent relaxational response between two discrete levels. Neither of these assumptions likely applied to the fluctuational response in $KCuF_3$, and therefore detailed fits of this response to the observed

data would not provide useful information. While we can't completely rule out the possibility that the response observed in $KCuF_3$ is associated with a standard inelastic Lorentzian response, such a response would imply a strongly overdamped $(\gamma \gg \omega_o)$ response, and hence the presence of strong fluctuations of the $\rm CuF_6$ octahedra in this pressure and temperature regime. Note also that the thermal Bose factor $(1+n(\omega)) \sim 1$ over the temperature and frequency range studied in this paper, so there is a negligible Bose factor contribution in the Raman spectra presented in Figs. 1 and 2.

[26] S.M. Shapiro *et al.*, Phys. Rev. B **6**, 4332 (1972).

- [27] J.K. Kjems et al., Phys. Rev. B 8, 1119 (1973).
- [28] K. Gesi et al., Phys. Rev. B 5, 1933 (1972).
- [29] Indeed, neutron scattering studies of isostructural KMnF³ show that the diffuse neutron scattering associated with fluctuations of the MnF_6 octahedra are connected with mode softening observed for rotational F modes; see ref. 28.
- [30] O.G. Shpyrko et al., Nature **447**, 68 (2007).
- [31] D. Merunka and B. Rakvin, Struct. Bond. 124, 149 (2007).
- [32] G.A. Samara, Phys. Rev. Lett. **27**, 103 (1971).