This is the accepted manuscript made available via CHORUS. The article has been published as:

Observation of Time-Reversal Violation in the $B^{\wedge}\{0\}$ Meson System
J. P. Lees et al. (The BABAR Collaboration)

Phys. Rev. Lett. 109, 211801 - Published 19 November 2012
DOI: 10.1103/PhysRevLett.109.211801

Observation of Time Reversal Violation in the B^{0} Meson System

J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ A. Palano ${ }^{a b},{ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ D. N. Brown, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Lynch, ${ }^{5}$ H. Koch, ${ }^{6}$ T. Schroeder, ${ }^{6}$ D. J. Asgeirsson, ${ }^{7}$ C. Hearty, ${ }^{7}$ T. S. Mattison, ${ }^{7}$ J. A. McKenna, ${ }^{7}$ R. Y. So, ${ }^{7}$ A. Khan, ${ }^{8}$ V. E. Blinov, ${ }^{9}$ A. R. Buzykaev, ${ }^{9}$ V. P. Druzhinin,,${ }^{9}$ V. B. Golubev, ${ }^{9}$ E. A. Kravchenko, ${ }^{9}$ A. P. Onuchin, ${ }^{9}$ S. I. Serednyakov, ${ }^{9}$ Yu. I. Skovpen, ${ }^{9}$ E. P. Solodov, ${ }^{9}$ K. Yu. Todyshev,,${ }^{9}$ A. N. Yushkov, ${ }^{9}$ M. Bondioli, ${ }^{10}$ D. Kirkby, ${ }^{10}$ A. J. Lankford, ${ }^{10}$ M. Mandelkern, ${ }^{10}$ H. Atmacan, ${ }^{11}$ J. W. Gary, ${ }^{11}$ F. Liu, ${ }^{11}$ O. Long, ${ }^{11}$ G. M. Vitug, ${ }^{11}$ C. Campagnari, ${ }^{12}$ T. M. Hong, ${ }^{12}$ D. Kovalskyi, ${ }^{12}$ J. D. Richman, ${ }^{12}$ C. A. West, ${ }^{12}$ A. M. Eisner, ${ }^{13}$ J. Kroseberg, ${ }^{13}$ W. S. Lockman, ${ }^{13}$ A. J. Martinez, ${ }^{13}$
B. A. Schumm, ${ }^{13}$ A. Seiden, ${ }^{13}$ D. S. Chao, ${ }^{14}$ C. H. Cheng, ${ }^{14}$ B. Echenard, ${ }^{14}$ K. T. Flood, ${ }^{14}$ D. G. Hitlin, ${ }^{14}$ P. Ongmongkolkul, ${ }^{14}$ F. C. Porter, ${ }^{14}$ A. Y. Rakitin, ${ }^{14}$ R. Andreassen,,${ }^{15}$ Z. Huard, ${ }^{15}$ B. T. Meadows, ${ }^{15}$ M. D. Sokoloff, ${ }^{15}$ L. Sun,,${ }^{15}$ P. C. Bloom,,${ }^{16}$ W. T. Ford, ${ }^{16}$ A. Gaz, ${ }^{16}$ U. Nauenberg, ${ }^{16}$ J. G. Smith, ${ }^{16}$ S. R. Wagner, ${ }^{16}$ R. Ayad,,${ }^{17, *}$ W. H. Toki, ${ }^{17}$ B. Spaan, ${ }^{18}$ K. R. Schubert, ${ }^{19}$ R. Schwierz, ${ }^{19}$ D. Bernard, ${ }^{20}$ M. Verderi, ${ }^{20}$ P. J. Clark, ${ }^{21}$ S. Playfer, ${ }^{21}$ D. Bettoni ${ }^{a},{ }^{22}$ C. Bozzi ${ }^{a},{ }^{22}$ R. Calabrese ${ }^{a b}$, ${ }^{22}$ G. Cibinetto ${ }^{a b},{ }^{22}$ E. Fioravanti ${ }^{a b},{ }^{22}$ I. Garzia ${ }^{a b},{ }^{22}$ E. Luppi ${ }^{a b},{ }^{22}$ M. Munerato ${ }^{a b},{ }^{22}$ L. Piemontese ${ }^{a},{ }^{22}$ V. Santoro ${ }^{a},{ }^{22}$ R. Baldini-Ferroli, ${ }^{23}$ A. Calcaterra, ${ }^{23}$ R. de Sangro, ${ }^{23}$ G. Finocchiaro, ${ }^{23}$ P. Patteri, ${ }^{23}$ I. M. Peruzzi, ${ }^{23, \dagger}$ M. Piccolo, ${ }^{23}$ M. Rama, ${ }^{23}$ A. Zallo, ${ }^{23}$ R. Contria ${ }^{a b},{ }^{24}$ E. Guido ${ }^{a b},{ }^{24}$ M. Lo Vetere ${ }^{a b},{ }^{24}$ M. R. Monge ${ }^{a b},{ }^{24}$ S. Passaggio ${ }^{a},{ }^{24}$ C. Patrignani ${ }^{a b},{ }^{24}$ E. Robutti ${ }^{a},{ }^{24}$ B. Bhuyan, ${ }^{25}$ V. Prasad, ${ }^{25}$ C. L. Lee,,${ }^{26}$ M. Morii, ${ }^{26}$ A. J. Edwards, ${ }^{27}$ A. Adametz, ${ }^{28}$ U. Uwer, ${ }^{28}$ H. M. Lacker,,${ }^{29}$ T. Lueck, ${ }^{29}$ P. D. Dauncey, ${ }^{30}$ U. Mallik, ${ }^{31}$ C. Chen, ${ }^{32}$ J. Cochran, ${ }^{32}$ W. T. Meyer, ${ }^{32}$ S. Prell, ${ }^{32}$ A. E. Rubin, ${ }^{32}$ A. V. Gritsan, ${ }^{33}$ Z. J. Guo, ${ }^{33}$ N. Arnaud,,${ }^{34}$ M. Davier, ${ }^{34}$ D. Derkach, ${ }^{34}$ G. Grosdidier, ${ }^{34}$ F. Le Diberder, ${ }^{34}$ A. M. Lutz, ${ }^{34}$ B. Malaescu, ${ }^{34}$ P. Roudeau, ${ }^{34}$ M. H. Schune, ${ }^{34}$ A. Stocchi, ${ }^{34}$ G. Wormser, ${ }^{34}$ D. J. Lange, ${ }^{35}$ D. M. Wright, ${ }^{35}$ C. A. Chavez, ${ }^{36}$ J. P. Coleman, ${ }^{36}$ J. R. Fry, ${ }^{36}$ E. Gabathuler, ${ }^{36}$ D. E. Hutchcroft, ${ }^{36}$ D. J. Payne,,${ }^{36}$
C. Touramanis, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ F. Di Lodovico, ${ }^{37}$ R. Sacco, ${ }^{37}$ M. Sigamani, ${ }^{37}$ G. Cowan, ${ }^{38}$ D. N. Brown, ${ }^{39}$ C. L. Davis, ${ }^{39}$ A. G. Denig, ${ }^{40}$ M. Fritsch, ${ }^{40}$ W. Gradl, ${ }^{40}$ K. Griessinger, ${ }^{40}$ A. Hafner, ${ }^{40}$ E. Prencipe, ${ }^{40}$ R. J. Barlow, ${ }^{41, \ddagger}$ G. Jackson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ E. Behn, ${ }^{42}$ R. Cenci, ${ }^{42}$ B. Hamilton, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ C. Dallapiccola, ${ }^{43}$ R. Cowan, ${ }^{44}$ D. Dujmic, ${ }^{44}$ G. Sciolla, ${ }^{44}$ R. Cheaib, ${ }^{45}$ D. Lindemann,,${ }^{45}$ P. M. Patel $,{ }^{45},{ }^{8}$ S. H. Robertson, ${ }^{45}$ P. Biassoni ${ }^{a b},{ }^{46}$ N. Neri ${ }^{a},{ }^{46}$ F. Palombo ${ }^{a b},{ }^{46}$ S. Stracka ${ }^{a b},{ }^{46}$ L. Cremaldi, ${ }^{47}$ R. Godang, ${ }^{47,}{ }^{4}$ R. Kroeger, ${ }^{47}$ P. Sonnek, ${ }^{47}$ D. J. Summers, ${ }^{47}$ X. Nguyen, ${ }^{48}$ M. Simard, ${ }^{48}$ P. Taras, ${ }^{48}$ G. De Nardo ${ }^{a b},{ }^{49}$ D. Monorchio ${ }^{a b},{ }^{49}$ G. Onorato ${ }^{a b},{ }^{a 9}$ C. Sciacca ${ }^{a b}{ }^{49}{ }^{4}$ M. Martinelli, ${ }^{50}$ G. Raven, ${ }^{50}$ C. P. Jessop, ${ }^{51}$ J. M. LoSecco, ${ }^{51}$ W. F. Wang, ${ }^{51}$ K. Honscheid,,${ }^{52}$ R. Kass, ${ }^{52}$ J. Brau, ${ }^{53}$ R. Frey, ${ }^{53}$ N. B. Sinev, ${ }^{53}$ D. Strom,,${ }^{53}$ E. Torrence, ${ }^{53}$ E. Feltresi ${ }^{a b,},{ }^{54}$ N. Gagliardi ${ }^{a b},{ }^{54}$ M. Margoni ${ }^{a b,}{ }^{54}$ M. Morandin ${ }^{a},{ }^{54}$ A. Pompili ${ }^{a},{ }^{54}$ M. Posocco ${ }^{a},{ }^{54}$ M. Rotondo ${ }^{a},{ }^{54}$ G. Simi ${ }^{a},{ }^{54}$ F. Simonetto ${ }^{a b},{ }^{54}$ R. Stroili ${ }^{a b},{ }^{54}$ S. Akar, ${ }^{55}$ E. Ben-Haim, ${ }^{55}$ M. Bomben, ${ }^{55}$ G. R. Bonneaud, ${ }^{55}$ H. Briand, ${ }^{55}$ G. Calderini, ${ }^{55}$ J. Chauveau, ${ }^{55}$ O. Hamon, ${ }^{55}$ Ph. Leruste, ${ }^{55}$ G. Marchiori, ${ }^{55}$ J. Ocariz, ${ }^{55}$ S. Sitt, ${ }^{55}$ M. Biasini ${ }^{a b},{ }^{56}$ E. Manoni ${ }^{a b},{ }^{56}$ S. Pacetti ${ }^{a b},{ }^{56}$ A. Rossi ${ }^{a b},{ }^{56}$ C. Angelini ${ }^{a b},{ }^{57}$ G. Batignani ${ }^{a b},{ }^{57}$ S. Bettarinia ${ }^{a b},{ }^{57}$ M. Carpinelli ${ }^{a b,},{ }^{57, * *}$ G. Casarosa ${ }^{a b,},{ }^{57}$ A. Cervelli ${ }^{a b},{ }^{57}$ F. Forti ${ }^{a b},{ }^{57}$ M. A. Giorgia ${ }^{a b},{ }^{57}$ A. Lusiani ${ }^{a c},{ }^{57}$ B. Oberhof ${ }^{a b b},{ }^{57}$ E. Paoloni ${ }^{a b},{ }^{57}$ A. Perez ${ }^{a},{ }^{57}$ G. Rizzo ${ }^{a b},{ }^{57}$ J. J. Walsh ${ }^{a},{ }^{57}$ D. Lopes Pegna, ${ }^{58}$ J. Olsen, ${ }^{58}$ A. J. S. Smith, ${ }^{58}$ A. V. Telnov, ${ }^{58}$ F. Anulli ${ }^{a},{ }^{59}$ R. Faccini ${ }^{a b},{ }^{59}$ F. Ferrarotto ${ }^{a},{ }^{59}$ F. Ferroni ${ }^{a b},{ }^{59}$ M. Gaspero ${ }^{a b},{ }^{59}$ L. Li Gioi ${ }^{a},{ }^{a 5}$ M. A. Mazzoni ${ }^{a},{ }^{59}$ G. Piredda ${ }^{a},{ }^{59}$ C. Bünger, ${ }^{60}$ O. Grünberg, ${ }^{60}$ T. Hartmann, ${ }^{60}$ T. Leddig, ${ }^{60}$ H. Schröder, ${ }^{60,}{ }_{\S}$ C. Voss,,${ }^{60}$ R. Waldi, ${ }^{60}$ T. Adye, ${ }^{61}$ E. O. Olaiya, ${ }^{61}$ F. F. Wilson, ${ }^{61}$ S. Emery, ${ }^{62}$ G. Hamel de Monchenault, ${ }^{62}$ G. Vasseur, ${ }^{62}$ Ch. Yèche, ${ }^{62}$ D. Aston, ${ }^{63}$ D. J. Bard, ${ }^{63}$ R. Bartoldus, ${ }^{63}$ J. F. Benitez, ${ }^{63}$ C. Cartaro, ${ }^{63}$ M. R. Convery, ${ }^{63}$ J. Dorfan, ${ }^{63}$ G. P. Dubois-Felsmann, ${ }^{63}$ W. Dunwoodie, ${ }^{63}$ M. Ebert,,${ }^{63}$ R. C. Field, ${ }^{63}$ M. Franco Sevilla, ${ }^{63}$ B. G. Fulsom, ${ }^{63}$ A. M. Gabareen, ${ }^{63}$ M. T. Graham, ${ }^{63}$ P. Grenier, ${ }^{63}$ C. Hast, ${ }^{63}$
W. R. Innes, ${ }^{63}$ M. H. Kelsey, ${ }^{63}$ P. Kim, ${ }^{63}$ M. L. Kocian, ${ }^{63}$ D. W. G. S. Leith, ${ }^{63}$ P. Lewis, ${ }^{63}$ B. Lindquist, ${ }^{63}$ S. Luitz, ${ }^{63}$ V. Luth,,${ }^{63}$ H. L. Lynch, ${ }^{63}$ D. B. MacFarlane, ${ }^{63}$ D. R. Muller, ${ }^{63}$ H. Neal, ${ }^{63}$ S. Nelson, ${ }^{63}$ M. Perl, ${ }^{63}$ T. Pulliam, ${ }^{63}$ B. N. Ratcliff, ${ }^{63}$ A. Roodman, ${ }^{63}$ A. A. Salnikov, ${ }^{63}$ R. H. Schindler, ${ }^{63}$ A. Snyder, ${ }^{63}$ D. Su, ${ }^{63}$ M. K. Sullivan, ${ }^{63}$ J. Va'vra, ${ }^{63}$ A. P. Wagner, ${ }^{63}$ W. J. Wisniewski, ${ }^{63}$ M. Wittgen, ${ }^{63}$ D. H. Wright, ${ }^{63}$ H. W. Wulsin, ${ }^{63}$ C. C. Young, ${ }^{63}$ V. Ziegler, ${ }^{63}$ W. Park, ${ }^{64}$ M. V. Purohit, ${ }^{64}$ R. M. White, ${ }^{64}$ J. R. Wilson, ${ }^{64}$ A. Randle-Conde, ${ }^{65}$ S. J. Sekula,,${ }^{65}$ M. Bellis, ${ }^{66}$ P. R. Burchat, ${ }^{66}$ T. S. Miyashita, ${ }^{66}$ E. M. T. Puccio, ${ }^{66}$ M. S. Alam, ${ }^{67}$ J. A. Ernst,${ }^{67}$ R. Gorodeisky, ${ }^{68}$ N. Guttman, ${ }^{68}$ D. R. Peimer, ${ }^{68}$ A. Soffer, ${ }^{68}$ P. Lund, ${ }^{69}$ S. M. Spanier, ${ }^{69}$ J. L. Ritchie, ${ }^{70}$

A. M. Ruland, ${ }^{70}$ R. F. Schwitters, ${ }^{70}$ B. C. Wray, ${ }^{70}$ J. M. Izen, ${ }^{71}$ X. C. Lou, ${ }^{71}$ F. Bianchi ${ }^{a b},{ }^{72}$ D. Gamba ${ }^{a b},{ }^{72}$
S. Zambito ${ }^{a b},{ }^{72}$ L. Lanceri ${ }^{a b},{ }^{73}$ L. Vitale ${ }^{a b},{ }^{73}$ J. Bernabeu, ${ }^{74}$ F. Martinez-Vidal, ${ }^{74}$ A. Oyanguren, ${ }^{74}$ P. Villanueva-Perez, ${ }^{74}$ H. Ahmed, ${ }^{75}$ J. Albert, ${ }^{75}$ Sw. Banerjee, ${ }^{75}$ F. U. Bernlochner, ${ }^{75}$ H. H. F. Choi, ${ }^{75}$ G. J. King, ${ }^{75}$ R. Kowalewski, ${ }^{75}$ M. J. Lewczuk, ${ }^{75}$ I. M. Nugent, ${ }^{75}$ J. M. Roney, ${ }^{75}$ R. J. Sobie, ${ }^{75}$ N. Tasneem, ${ }^{75}$ T. J. Gershon, ${ }^{76}$ P. F. Harrison, ${ }^{76}$ T. E. Latham, ${ }^{76}$ H. R. Band, ${ }^{77}$ S. Dasu, ${ }^{77}$ Y. Pan, ${ }^{77}$ R. Prepost, ${ }^{77}$ and S. L. Wu ${ }^{77}$

(The BABAR Collaboration)
${ }^{1}$ Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP),
Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ INFN Sezione di Baria ; Dipartimento di Fisica, Università di Bari ${ }^{b}$, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{7}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{8}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{9}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{10}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{11}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{12}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{13}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{14}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{15}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{16}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{17}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{18}$ Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
${ }^{19}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{20}$ Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
${ }^{21}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{22}$ INFN Sezione di Ferrara ${ }^{a}$; Dipartimento di Fisica, Università di Ferrara ${ }^{b}$, I-44100 Ferrara, Italy
${ }^{23}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
${ }^{24}$ INFN Sezione di Genova ${ }^{a}$; Dipartimento di Fisica, Università di Genova ${ }^{b}$, I-16146 Genova, Italy
${ }^{25}$ Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
${ }^{26}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{27}$ Harvey Mudd College, Claremont, California 91711, USA
${ }^{28}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{29}$ Humboldt-Universitä̈t zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
${ }^{30}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{31}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{32}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{33}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{34}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11,
Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
${ }^{35}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{36}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{37}$ Queen Mary, University of London, London, E1 4NS, United Kingdom
${ }^{38}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{39}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{40}$ Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{22}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{45} \mathrm{Mc}$ Gill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{46}$ INFN Sezione di Milano ${ }^{a}$; Dipartimento di Fisica, Università di Milano ${ }^{\text {b }}$, I-20133 Milano, Italy
${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{48}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
${ }^{49}$ INFN Sezione di Napoli ${ }^{a}$; Dipartimento di Scienze Fisiche, Università di Napoli Federico II ${ }^{b}$, I-80126 Napoli, Italy
${ }^{50}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{51}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{52}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{53}$ University of Oregon, Eugene, Oregon 97403, USA

${ }^{54}$ INFN Sezione di Padova ${ }^{a}$; Dipartimento di Fisica, Università di Padova ${ }^{b}$, I-35131 Padova, Italy
${ }^{55}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{56}$ INFN Sezione di Perugia ${ }^{a}$; Dipartimento di Fisica, Università di Perugia ${ }^{b}$, I-06100 Perugia, Italy
${ }^{57}$ INFN Sezione di Pisa ${ }^{a}$; Dipartimento di Fisica,
Università di Pisa ${ }^{b}$; Scuola Normale Superiore di Pisa ${ }^{c}$, I-56127 Pisa, Italy
${ }^{58}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{59}$ INFN Sezione di Roma ${ }^{a}$; Dipartimento di Fisica, Università di Roma La Sapienza ${ }^{b}$, I-00185 Roma, Italy
${ }^{60}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{61}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{62}$ CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
${ }^{63}$ SLAC National Accelerator Laboratory, Stanford, California 94309 USA
${ }^{64}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{65}$ Southern Methodist University, Dallas, Texas 75275, USA
${ }^{66}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{67}$ State University of New York, Albany, New York 12222, USA
${ }^{68}$ Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
${ }^{69}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{70}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{71}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{72}$ INFN Sezione di Torino ${ }^{a}$; Dipartimento di Fisica Sperimentale, Università di Torino ${ }^{b}$, I-10125 Torino, Italy
${ }^{73}$ INFN Sezione di Trieste ${ }^{a}$; Dipartimento di Fisica, Università di Trieste ${ }^{b}$, I-34127 Trieste, Italy
${ }^{14}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{75}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{76}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{77}$ University of Wisconsin, Madison, Wisconsin 53706, USA

Abstract

Although $C P$ violation in the B meson system has been well established by the B factories, there has been no direct observation of time reversal violation. The decays of entangled neutral B mesons into definite flavor states (B^{0} or \bar{B}^{0}), and $J / \psi K_{L}^{0}$ or $c \bar{c} K_{S}^{0}$ final states (referred to as B_{+}or B_{-}), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, $\bar{B}^{0} \rightarrow B_{-}$and $B_{-} \rightarrow \bar{B}^{0}$, as a function of the time difference between the two B decays. Using 468 million $B \bar{B}$ pairs produced in $\Upsilon(4 S)$ decays collected by the BABAR detector at SLAC, we measure T violating parameters in the time evolution of neutral B mesons, yielding $\Delta S_{T}^{+}=-1.37 \pm 0.14$ (stat.) \pm 0.06 (syst.) and $\Delta S_{T}^{-}=1.17 \pm 0.18$ (stat.) ± 0.11 (syst.). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.

PACS numbers: $13.25 . \mathrm{Ft}, 11.30 . \mathrm{Er}, 12.15 . \mathrm{Ff}, 14.40 . \mathrm{Lb}$

The observations of $C P$-symmetry breaking, first in neutral K decays [1] and more recently in B mesons [2, 3], are consistent with the standard model (SM) mechanism of the three-family Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix being the dominant source of $C P$ violation [4]. Local Lorentz invariant quantum field theories imply $C P T$ invariance [5], in accordance with all experimental evidence $[6,7]$. Hence, it is expected that the $C P$-violating weak interaction also violates time reversal invariance.

To date, the only evidence related to T violation has been found in the neutral K system, where a difference between the probabilities of $K^{0} \rightarrow \bar{K}^{0}$ and $\bar{K}^{0} \rightarrow$ K^{0} transitions for a given elapsed time has been measured [8]. This flavor mixing asymmetry is both $C P$ and T-violating (the two transformations lead to the same observation), independent of time, and requires a nonzero decay width difference $\Delta \Gamma_{K}$ between the neu-
tral K mass eigenstates to be observed [9-11]. The dependence with $\Delta \Gamma_{K}$ has aroused controversy in the interpretation of this observable [7, 10-12]. In the neutral B and B_{s} systems, where $\Delta \Gamma_{d}$ and $\Delta \Gamma_{s}$ are negligible and significantly smaller, respectively, the flavor mixing asymmetry is much more difficult to detect [13]. Experiments that could provide direct evidence supporting T non-invariance, without using an observation which also violates $C P$, involve either nonvanishing expectation values of T-odd observables, or the exchange of initial and final states, which are not $C P$ conjugates to each other, in the time evolution for transition processes. Among the former, there exist upper limits for electric dipole moments of the neutron and the electron [14]. The latter, requiring neutrinos or unstable particles, are particularly difficult to implement.

In this letter, we report the direct observation of T violation in the B meson system, through the exchange of initial and final states in transitions that can only be con-
nected by a T-symmetry transformation. The method is described in Ref. [15], based on the concepts proposed in Ref. [16] and further discussed in Refs. [11, 17, 18]. We use a data sample of $426 \mathrm{fb}^{-1}$ of integrated luminosity at the $\Upsilon(4 S)$ resonance, corresponding to $468 \times 10^{6} B \bar{B}$ pairs, and $45 \mathrm{fb}^{-1}$ at a center-of-mass (c.m.) energy 40 MeV below the $\Upsilon(4 S)$, recorded by the BABAR detector [19] at the PEP-II asymmetric-energy $e^{+} e^{-}$collider at SLAC. The experimental analysis exploits identical reconstruction algorithms, selection criteria, calibration techniques, and B meson samples to our most recent time-dependent $C P$ asymmetry measurement in $B \rightarrow c \bar{c} K^{(*) 0}$ decays [20], with the exception of $\eta_{c} K_{S}^{0}$ and $J / \psi K^{* 0}\left(\rightarrow K_{S}^{0} \pi^{0}\right)$ final states. The "flavor tagging" is combined here, for the first time, with the " $C P$ tagging" [16], as required for the construction of T transformed processes. Whereas the descriptions of the sample composition and time-dependent backgrounds are the same as described in Ref. [20], the signal giving access to the T-violating parameters needs a different data treatment. This echoes the fundamental differences between observables for T and $C P$ symmetry breaking. The procedure to determine the T-violating parameters and their significance is thus novel [15].

In the decay of the $\Upsilon(4 S)$, the two B mesons are in an entangled, antisymmetric state, as required by angular momentum conservation for a P -wave particle system. This two-body state is usually written in terms of flavor eigenstates, such as B^{0} and \bar{B}^{0}, but can be expressed in terms of any linear combinations of B^{0} and \bar{B}^{0}, such as the B_{+}and B_{-}states introduced in Ref. [15]. They are defined as the neutral B states filtered by the decay to $C P$-eigenstates $J / \psi K_{L}^{0}\left(C P\right.$-even) and $J / \psi K_{S}^{0}$, with $K_{S}^{0} \rightarrow \pi \pi(C P$-odd $)$, respectively. The B_{+}and B_{-}states are orthogonal to each other when there is only one weak phase involved in the B decay amplitude, as it occurs in B decays to $J / \psi K^{0}$ final states [21], and $C P$ violation in neutral kaons is neglected.

We select events in which one B candidate is reconstructed in a B_{+}or B_{-}state, and the flavor of the other B is identified, referred to as flavor identification (ID). We generically denote reconstructed final states that identify the flavor of the B as $\ell^{-} X$ for \bar{B}^{0} and $\ell^{+} X$ for B^{0}. The notation $\left(f_{1}, f_{2}\right)$ is used to indicate the flavor or $C P$ final states that are reconstructed at corresponding times t_{1} and t_{2}, where $t_{2}>t_{1}$, i.e., $B_{1} \rightarrow f_{1}$ is the first decay in the event and $B_{2} \rightarrow f_{2}$ is the second decay. For later use in Eq. (1), we define $\Delta \tau=t_{2}-t_{1}>0$. Once the B_{1} state is filtered at time t_{1}, the living partner B_{2} is prepared ("tagged") by entanglement as its orthogonal state. The notation $B_{2}\left(t_{1}\right) \rightarrow B_{2}\left(t_{2}\right)$ describes the transition of the B which decays at t_{2}, having tagged its state at t_{1}. For example, an event reconstructed in the time-ordered final states $\left(\ell^{+} X, J / \psi K_{S}^{0}\right)$ identifies the transition $\bar{B}^{0} \rightarrow B_{-}$for the second B to decay. We compare the rate for this transition to its T-reversed
$B_{-} \rightarrow \bar{B}^{0}$ (exchange of initial and final states) by reconstructing the final states $\left(J / \psi K_{L}^{0}, \ell^{-} X\right)$. Any difference in these two rates is evidence for T-symmetry violation. There are three other independent comparisons that can be made between $B_{+} \rightarrow B^{0}\left(J / \psi K_{S}^{0}, \ell^{+} X\right), \bar{B}^{0} \rightarrow B_{+}$ $\left(\ell^{+} X, J / \psi K_{L}^{0}\right)$, and $B_{-} \rightarrow B^{0}\left(J / \psi K_{L}^{0}, \ell^{+} X\right)$ transitions and their T-conjugates, $B^{0} \rightarrow B_{+}\left(\ell^{-} X, J / \psi K_{L}^{0}\right), B_{+} \rightarrow$ $\bar{B}^{0}\left(J / \psi K_{S}^{0}, \ell^{-} X\right)$, and $B^{0} \rightarrow B_{-}\left(\ell^{-} X, J / \psi K_{S}^{0}\right)$, respectively. Similarly, four different $C P(C P T)$ comparisons can be made, e.g., between the $\bar{B}^{0} \rightarrow B_{-}$transition and its $C P(C P T)$-transformed $B^{0} \rightarrow B_{-}\left(B_{-} \rightarrow B^{0}\right)[15]$.

Assuming $\Delta \Gamma_{d}=0$, each of the eight transitions has a general, time-dependent decay rate $g_{\alpha, \beta}^{ \pm}(\Delta \tau)$ given by

$$
e^{-\Gamma_{d} \Delta \tau}\left\{1+S_{\alpha, \beta}^{ \pm} \sin \left(\Delta m_{d} \Delta \tau\right)+C_{\alpha, \beta}^{ \pm} \cos \left(\Delta m_{d} \Delta \tau\right)\right\},(1)
$$

where indices $\alpha=\ell^{+}, \ell^{-}$and $\beta=K_{S}^{0}, K_{L}^{0}$ stand for $\ell^{+} X, \ell^{-} X$ and $c \bar{c} K_{S}^{0}, J / \psi K_{L}^{0}$ final states, respectively, and the symbol + or - indicates whether the decay to the flavor final state α occurs before or after the decay to the $C P$ final state β. Here, Γ_{d} is the average decay width, Δm_{d} is the mass difference between the neutral B mass eigenstates, and $C_{\alpha, \beta}^{ \pm}$and $S_{\alpha, \beta}^{ \pm}$are model independent coefficients. The sine term, expected to be large in the SM , results from the interference between direct decay of the neutral B to the $J / \psi K^{0}$ final state and decay after $B^{0}-\bar{B}^{0}$ oscillation, while the cosine term arises from the interference between decay amplitudes with different weak and strong phases, and is expected to be negligible [21]. T violation would manifest itself through differences between the $S_{\alpha, \beta}^{ \pm}$or $C_{\alpha, \beta}^{ \pm}$values for T-conjugated processes, for example between $S_{\ell^{+}, K_{S}^{0}}^{+}$and $S_{\ell^{-}, K_{L}^{0}}^{-}$.

In addition to $J / \psi K_{S}^{0}, B_{-}$states are reconstructed through the $\psi(2 S) K_{S}^{0}$ and $\chi_{c 1} K_{S}^{0}$ final states (denoted generically as $c \bar{c} K_{S}^{0}$), with $J / \psi, \psi(2 S) \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$, $\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}, \chi_{c 1} \rightarrow J / \psi \gamma$, and $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}$ (the latter only for $J / \psi K_{S}^{0}$). B_{+}states are identified through $J / \psi K_{L}^{0}$. The $J / \psi K_{L}^{0}$ candidates are characterized by the difference ΔE between the reconstructed energy of the B and the beam energy in the $e^{+} e^{-}$ c.m. frame, $E_{\text {beam }}^{*}$, while for the $c \bar{c} K_{S}^{0}$ modes we use the beam-energy substituted invariant mass $m_{\mathrm{ES}}=$ $\sqrt{\left(E_{\text {beam }}^{*}\right)^{2}-\left(p_{B}^{*}\right)^{2}}$, where p_{B}^{*} is the B momentum in the c.m. frame.

The flavor ID of the other neutral B meson in the event, not associated with the reconstructed B_{+}or B_{-}, is made on the basis of the charges of prompt leptons, kaons, pions from D^{*} mesons, and high-momentum charged particles. These flavor ID inputs are combined using a neural network (NN), trained with Monte Carlo (MC) simulated data. The output of the NN is then divided into six hierarchical, mutually exclusive flavor categories of increasing misidentification (misID) probability w. Events for which the NN output indicates very low discriminating power are excluded from further analysis. We determine the signed difference of proper time
$\Delta t=t_{\beta}-t_{\alpha}$ between the two B decays from the measured separation of the decay vertices along the collision axis. Events are accepted if the reconstructed $|\Delta t|$ and its estimated uncertainty, $\sigma_{\Delta t}$, are lower than 20 ps and 2.5 ps , respectively. The performances of the flavor ID and Δt reconstruction algorithms are evaluated by using a large sample of flavor-specific neutral B decays to $D^{(*)-}\left[\pi^{+}, \rho(770)^{+}, a_{1}(1260)^{+}\right]$and $J / \psi K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right)$ final states (referred to as $B_{\text {flav }}$ sample). The Δt resolution function is the same as in Ref. [20] except that all Gaussian offsets and widths are modeled to be proportional to $\sigma_{\Delta t}$.

The composition of the final sample is determined through fits to the m_{ES} and ΔE distributions, using parametric forms and distributions extracted from MC simulation and dilepton mass sidebands in data to describe the signal and background components. Figure 1 shows the m_{ES} and ΔE data distributions for events that satisfy the flavor ID and vertexing requirements, overlaid with the fit projections. The final sample contains $7796 c \bar{c} K_{S}^{0}$ events, with purities in the signal region ($5.27<m_{\mathrm{ES}}<5.29 \mathrm{GeV} / c^{2}$) ranging between 87% and 96%, and $5813 J / \psi K_{L}^{0}$ events, with a purity of 56% in the $|\Delta E|<10 \mathrm{MeV}$ region.

FIG. 1: (color online). Distributions of (a) $m_{E S}$ and (b) ΔE for the neutral B decays reconstructed in the $c \bar{c} K_{S}^{0}$ and $J / \psi K_{L}^{0}$ final states, respectively, after flavor ID and vertexing requirements. In each plot, the shaded region is the estimated background contribution. The two samples of events are identical to those used in our most recent $C P$-violation study [20], but excluding $\eta_{c} K_{S}^{0}$ and $J / \psi K^{* 0}\left(\rightarrow K_{S}^{0} \pi^{0}\right)$ final states.

We perform a simultaneous, unbinned maximum likelihood fit to the Δt distributions for flavor identified $c \bar{c} K_{S}^{0}$ and $J / \psi K_{L}^{0}$ events, split by flavor category. The signal probability density function (PDF) is [15]

$$
\begin{align*}
\mathcal{H}_{\alpha, \beta}(\Delta t) \propto & g_{\alpha, \beta}^{+}\left(\Delta t_{\text {true }}\right) H\left(\Delta t_{\text {true }}\right) \otimes \mathcal{R}\left(\delta t ; \sigma_{\Delta t}\right)+(\tag{2}\\
& g_{\alpha, \beta}^{-}\left(-\Delta t_{\text {true }}\right) H\left(-\Delta t_{\text {true }}\right) \otimes \mathcal{R}\left(\delta t ; \sigma_{\Delta t}\right),
\end{align*}
$$

where $\Delta t_{\text {true }}$ is the signed difference of proper time between the two B decays in the limit of perfect Δt reconstruction, H is the Heaviside step function, $\mathcal{R}\left(\delta t ; \sigma_{\Delta t}\right)$ with $\delta t=\Delta t-\Delta t_{\text {true }}$ is the resolution function, and $g_{\alpha, \beta}^{ \pm}$ are given by Eq. (1). Note that $\Delta t_{\text {true }}$ is equivalent to
$\Delta \tau(-\Delta \tau)$ when a true flavor $(C P)$ tag occurs. Because of the convolution with the resolution function, the distribution for $\Delta t>0$ contains predominantly true flavortagged events, with a small contribution from true $C P$ tagged events at low Δt, and conversely for $\Delta t<0$. Mistakes in the flavor ID algorithm mix correct and incorrect flavor assignments, and dilute the T-violating asymmetries by a factor of approximately $(1-2 w)$. Backgrounds are accounted for by adding terms to Eq. (2) [20]. Events are assigned signal and background probabilities based on the m_{ES} or ΔE distributions, for $c \bar{c} K_{S}^{0}$ or $J / \psi K_{L}^{0}$ events, respectively.

A total of 27 parameters are varied in the likelihood fit: eight pairs of $\left(S_{\alpha, \beta}^{ \pm}, C_{\alpha, \beta}^{ \pm}\right)$coefficients for the signal, and 11 parameters describing possible $C P$ and T violation in the background. All remaining signal and background parameters are fixed to values taken from the $B_{\text {flav }}$ sample, J / ψ-candidate sidebands in $J / \psi K_{L}^{0}$, world averages for Γ_{d} and Δm_{d} [22], or MC simulation [20]. From the 16 signal coefficients [23], we construct six pairs of independent asymmetry parameters $\left(\Delta S_{T}^{ \pm}, \Delta C_{T}^{ \pm}\right),\left(\Delta S_{C P}^{ \pm}, \Delta C_{C P}^{ \pm}\right)$, and $\left(\Delta S_{C P T}^{ \pm}, \Delta C_{C P T}^{ \pm}\right)$, as shown in Table I. The T-asymmetry parameters have the advantage that T-symmetry breaking would directly manifest itself through any nonzero value of $\Delta S_{T}^{ \pm}$or $\Delta C_{T}^{ \pm}$, or any difference between $\Delta S_{C P}^{ \pm}$and $\Delta S_{C P T}^{ \pm}$, or between $\Delta C_{C P}^{ \pm}$and $\Delta C_{C P T}^{ \pm}$(analogously for $C P$ - or $C P T$-symmetry breaking). The measured values for the asymmetry parameters are reported in Table I. There is another two times three pairs of $T-, C P-$, and $C P T$ asymmetry parameters, but they are not independent and can be derived from Table I or Ref. [23].

We build time-dependent asymmetries $A_{T}(\Delta t)$ to visually demonstrate the T-violating effect. For transition $\bar{B}^{0} \rightarrow B_{-}$,

$$
\begin{equation*}
A_{T}(\Delta t) \equiv \frac{\mathcal{H}_{\ell^{-}, K_{L}^{0}}^{-}(\Delta t)-\mathcal{H}_{\ell^{+}, K_{S}^{0}}^{+}(\Delta t)}{\mathcal{H}_{\ell^{-}, K_{L}^{0}}^{-}(\Delta t)+\mathcal{H}_{\ell^{+}, K_{S}^{0}}^{+}(\Delta t)} \tag{3}
\end{equation*}
$$

where $\mathcal{H}_{\alpha, \beta}^{ \pm}(\Delta t)=\mathcal{H}_{\alpha, \beta}(\pm \Delta t) H(\Delta t)$. With this construction, $A_{T}(\Delta t)$ is defined only for positive Δt values. Neglecting reconstruction effects, $A_{T}(\Delta t) \approx$ $\frac{\Delta S_{T}^{+}}{2} \sin \left(\Delta m_{d} \Delta t\right)+\frac{\Delta C_{T}^{+}}{2} \cos \left(\Delta m_{d} \Delta t\right)$. We introduce the other three T-violating asymmetries similarly. Figure 2 shows the four observed asymmetries, overlaid with the projection of the best fit results to the Δt distributions with and without the eight T-invariance restrictions: $\Delta S_{T}^{ \pm}=\Delta C_{T}^{ \pm}=0, \Delta S_{C P}^{ \pm}=\Delta S_{C P T}^{ \pm}$, and $\Delta C_{C P}^{ \pm}=$ $\Delta C_{C P T}^{ \pm}$[23].

Using large samples of MC simulated data, we determine that the asymmetry parameters are unbiased and have Gaussian errors. Splitting the data by flavor category or data-taking period give consistent results. Fitting a single pair of (S, C) coefficients, reversing the sign of S under $\Delta t \leftrightarrow-\Delta t$, or $B_{+} \leftrightarrow B_{-}$or $B^{0} \leftrightarrow \bar{B}^{0}$ exchanges, and the sign of C under $B^{0} \leftrightarrow \bar{B}^{0}$ exchange, we obtain

TABLE I: Measured values of the $T-, C P-$, and $C P T$ asymmetry parameters, defined as the differences in $S_{\alpha, \beta}^{ \pm}$and $C_{\alpha, \beta}^{ \pm}$between symmetry-transformed transitions. The values of reference coefficients are also given at the bottom. The first uncertainty is statistical and the second systematic. The indices $\ell^{-}, \ell^{+}, K_{S}^{0}$, and K_{L}^{0} stand for reconstructed final states that identify the B meson as $\bar{B}^{0}, B^{0}, B_{-}$, and B_{+}, respectively.

Parameter	Result
$\Delta S_{T}^{+}=S_{\ell^{-}, K_{L}^{0}}^{-}-S_{\ell^{+}, K_{S}^{0}}^{+}$	$-1.37 \pm 0.14 \pm 0.06$
$\Delta S_{T}^{-}=S_{\ell^{-}, K_{L}^{0}}^{+}-S_{\ell^{+}, K_{S}^{0}}^{+}$	$1.17 \pm 0.18 \pm 0.11$
$\Delta C_{T}^{+}=C_{\ell^{-}, K_{L}^{0}}^{-}-C_{\ell^{+}, K_{S}^{0}}^{+}$	$0.10 \pm 0.14 \pm 0.08$
$\Delta C_{T}^{-}=C_{\ell^{-}, K_{L}^{0}}^{+}-C_{\ell^{+}, K_{S}^{0}}^{-}$	$0.04 \pm 0.14 \pm 0.08$
$\Delta S_{C P}^{+}=S_{\ell^{-}, K_{S}^{0}}^{+}-S_{\ell^{+}, K_{S}^{0}}^{+}$	$-1.30 \pm 0.11 \pm 0.07$
$\Delta S_{C P}^{-}=S_{\ell^{-}, K_{S}^{0}}^{-}-S_{\ell^{+}, K_{S}^{0}}^{-}$	$1.33 \pm 0.12 \pm 0.06$
$\Delta C_{C P}^{+}=C_{\ell^{-}, K_{S}^{0}}^{+}-C_{\ell^{+}, K_{S}^{0}}^{-}$	$0.07 \pm 0.09 \pm 0.03$
$\Delta C_{C P}^{-}=C_{\ell^{-}, K_{S}^{0}}^{-}-C_{\ell^{+}, K_{S}^{0}}^{-}$	$0.08 \pm 0.10 \pm 0.04$
$\Delta S_{C P T}^{+}=S_{\ell^{+}, K_{L}^{0}}^{-}-S_{\ell^{+}, K_{S}^{0}}^{+}$	$0.16 \pm 0.21 \pm 0.09$
$\Delta S_{C P T}^{-}=S_{\ell^{+}, K_{L}^{0}}^{+}-S_{\ell^{+}, K_{S}^{0}}^{-}$	$-0.03 \pm 0.13 \pm 0.06$
$\Delta C_{C P T}^{+}=C_{\ell^{+}, K_{L}^{0}}^{-}-C_{\ell^{+}, K_{S}^{0}}^{+}$	$0.14 \pm 0.15 \pm 0.07$
$\Delta C_{C P T}^{-}=C_{\ell^{+}, K_{L}^{0}}^{+}-C_{\ell^{+}, K_{S}^{0}}^{-}$	$0.03 \pm 0.12 \pm 0.08$
$S_{\ell^{+}, K_{S}^{0}}^{+}$	$0.55 \pm 0.09 \pm 0.06$
$S_{\ell^{+}, K_{S}^{0}}^{+}$	$0.66 \pm 0.06 \pm 0.04$
$C_{\ell^{+}, K_{S}^{0}}^{+}$	$-0.05 \pm 0.06 \pm 0.03$
$C_{\ell^{+}, K_{S}^{0}}^{-}$	

identical results to those obtained in Ref. [20]. Performing the analysis with B decays to $c \bar{c} K^{ \pm}$and $J / \psi K^{* \pm}$ final states instead of the signal $c \bar{c} K_{S}^{0}$ and $J / \psi K_{L}^{0}$, respectively, we find that all the asymmetry parameters are consistent with zero.

In evaluating systematic uncertainties in the asymmetry parameters, we follow the same procedure as in Ref. [20], with small changes [23]. We considered the statistical uncertainties on the flavor misID probabilities, Δt resolution function, and m_{ES} parameters. Differences in the misID probabilities and Δt resolution function between $B_{\text {flav }}$ and $C P$ final states, uncertainties due to assumptions in the resolution for signal and background components, compositions of the signal and backgrounds, the m_{ES} and $\Delta E \mathrm{PDFs}$, and the branching fractions for the backgrounds and their $C P$ properties, have also been accounted for. We also assign a systematic uncertainty corresponding to any deviation of the fit for MC simulated asymmetry parameters from their generated MC values, taking the largest between the deviation and its statistical uncertainty. Other sources of uncertainty such

FIG. 2: (color online). The four independent T-violating asymmetries for transition a) $\bar{B}^{0} \rightarrow B_{-}\left(\ell^{+} X, c \bar{c} K_{S}^{0}\right)$, b) $B_{+} \rightarrow B^{0}\left(c \bar{c} K_{S}^{0}, \ell^{+} X\right)$, c) $\bar{B}^{0} \rightarrow B_{+}\left(\ell^{+} X, J / \psi K_{L}^{0}\right)$, d) $B_{-} \rightarrow B^{0}\left(J / \psi K_{L}^{0}, \ell^{+} X\right)$, for combined flavor categories with low misID (leptons and kaons), in the signal region (5.27< $m_{\mathrm{ES}}<5.29 \mathrm{GeV} / c^{2}$ for $c \bar{c} K_{S}^{0}$ modes and $|\Delta E|<10 \mathrm{MeV}$ for $\left.J / \psi K_{L}^{0}\right)$. The points with error bars represent the data, the red solid and dashed blue curves represent the projections of the best fit results with and without T violation, respectively.
as our limited knowledge of $\Gamma_{d}, \Delta m_{d}$, and other fixed parameters, the interaction region, the detector alignment, and effects due to a nonzero $\Delta \Gamma_{d}$ value in the time dependence and the normalization of the PDF, are also considered. Treating $c \bar{c} K_{S}^{0}$ and $J / \psi K_{L}^{0}$ as orthogonal states and neglecting $C P$ violation for flavor categories without leptons, has an impact well below the statistical uncertainty. The total systematic uncertainties are shown in Table I [23].

The significance of the T-violation signal is evaluated based on the change in log-likelihood with respect to the maximum $(-2 \Delta \ln \mathcal{L})$. We reduce $-2 \Delta \ln \mathcal{L}$ by a factor $1+\max \left\{m_{i}^{2}\right\}=1.61$ to account for systematic errors in the evaluation of the significance. Here, $m_{i}^{2}=-2\left(\ln \mathcal{L}_{i}-\ln \mathcal{L}\right) / s^{2}$, where $\ln \mathcal{L}$ is the maximum loglikelihood, $\ln \mathcal{L}_{i}$ is the log-likelihood with asymmetry parameter i fixed to its total systematic variation and maximized over all other parameters, and $s^{2} \approx 1$ is the change in $2 \ln \mathcal{L}$ at 68% confidence level (CL) for one degree of freedom (d.o.f). Figure 3 shows CL contours calculated from the change $-2 \Delta \ln \mathcal{L}$ in two dimensions for the T asymmetry parameters $\left(\Delta S_{T}^{+}, \Delta C_{T}^{+}\right)$and $\left(\Delta S_{T}^{-}, \Delta C_{T}^{-}\right)$. The difference in the value of $2 \ln \mathcal{L}$ at the best fit solution with and without T violation is 226 with eight d.o.f., including systematic uncertainties. Assuming Gaussian errors, this corresponds to a significance equivalent to 14.0 standard deviations (σ), and thus constitutes direct observation of T violation. The significance of $C P$ and $C P T$ violation is determined analogously, obtaining 307 and 5 , respectively, equivalent to 17σ and 0.3σ, consistent with $C P$ violation and $C P T$ invariance.

FIG. 3: (color online). The central values (blue point and red square) and two-dimensional CL contours for $1-$ $\mathrm{CL}=0.317,4.55 \times 10^{-2}, 2.70 \times 10^{-3}, 6.33 \times 10^{-5}, 5.73 \times$ 10^{-7}, and 1.97×10^{-9}, calculated from the change in the value of $-2 \Delta \ln \mathcal{L}$ compared with its value at maximum $(-2 \Delta \ln \mathcal{L}=2.3,6.2,11.8,19.3,28.7,40.1)$, for the pairs of T-asymmetry parameters $\left(\Delta S_{T}^{+}, \Delta C_{T}^{+}\right)$(blue dashed curves) and ($\Delta S_{T}^{-}, \Delta C_{T}^{-}$) (red solid curves). Systematic uncertainties are included. The T-invariance point is shown as a + sign.

In summary, we have measured T-violating parameters in the time evolution of neutral B mesons, by comparing the probabilities of $\bar{B}^{0} \rightarrow B_{-}, B_{+} \rightarrow B^{0}, \bar{B}^{0} \rightarrow B_{+}$, and $B_{-} \rightarrow B^{0}$ transitions, to their T conjugate. We determine for the main T-violating parameters $\Delta S_{T}^{+}=$ -1.37 ± 0.14 (stat.) ± 0.06 (syst.) and $\Delta S_{T}^{-}=1.17 \pm$ 0.18 (stat.) ± 0.11 (syst.), and observe directly for the first time a departure from T invariance in the B meson system, with a significance equivalent to 14σ. Our results are consistent with current $C P$-violating measurements obtained invoking $C P T$ invariance. They constitute the first observation of T violation in any system through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

[^0]${ }^{\dagger}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
${ }^{\ddagger}$ Now at the University of Huddersfield, Huddersfield HD1 3DH, UK
${ }^{\S}$ Deceased
『 Now at University of South Alabama, Mobile, Alabama 36688, USA
** Also with Università di Sassari, Sassari, Italy
[1] J.H. Christenson et al., Phys. Rev. Lett. 13, 138 (1964).
[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 87, 091801 (2001); K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2001).
[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 131801 (2004); Y. Chao et al. (Belle Collaboration), Phys. Rev. Lett. 93, 191802 (2004).
[4] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[5] G. Lüders, Math. Fysik. Medd. Kgl. Danske Akad. Ved. Volume 28, 1954, p. 5; J.S. Bell, Birmingham University thesis (1954); W. Pauli, in W. Pauli, ed., Niels Bohr and the Development of Physics (McGraw-Hill, NY, 1955).
[6] R. Carosi et al., Phys. Lett. B 237, 303 (1990); A. AlaviHarati et al., Phys. Rev. D 67, 012005 (2003); B. Schwingenheuer et al., Phys. Rev. Lett. 74, 4376 (1995).
[7] See "Tests of conservation laws" review in [22].
[8] A. Angelopoulus et al. (CPLEAR Collaboration), Phys. Lett. B 444, 43 (1998).
[9] P. K. Kabir, Phys. Rev. D 2, 540 (1970).
[10] L. Wolfenstein, Phys. Rev. Lett. 83, 911 (1999).
[11] L. Wolfenstein, Int. Jour. Mod. Phys. 8, 501 (1999).
[12] H.J. Gerber, Eur. Phys. Jour. C 35, 195 (2004), and references therein.
[13] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 96, 251802 (2006), Phys. Rev. Lett. 92, 181801 (2004); E. Nakano et al. (Belle Collaboration), Phys. Rev. D 73, 112002 (2006); V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 105, 081801 (2010), Phys. Rev. Lett. 98, 151801 (2007); F. Abe et al. (CDF Collaboration), Phys. Rev. D 55, 2546 (2006).
[14] J.J. Hudson et al., Nature 473, 493-496 (2011); C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006).
[15] J. Bernabeu, F. Martinez-Vidal, P. Villanueva-Perez, JHEP 1208, 064 (2012).
[16] M. C. Bañuls and J. Bernabeu, Phys. Lett. B 464, 117 (1999); Nucl. Phys. B 590, 19 (2000).
[17] H. R. Quinn, J. Phys. Conf. Ser. 171, 011001 (2009).
[18] J. Bernabeu, J. Phys. Conf. Ser. 335, 012011 (2011).
[19] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[20] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 072009 (2009).
[21] See " $C P$ violation in meson decays" review in [22].
[22] K. Nakamura et al. (Particle Data Group), J. Phys. G37, 075021 (2010).
[23] See supplementary material for breakdown of the main systematic uncertainties on the asymmetry parameters, $C P$ - and $C P T$-violating asymmetries, and complete $\left(S_{\alpha, \beta}^{ \pm}, C_{\alpha, \beta}^{ \pm}\right)$analysis results.

[^0]: * Now at the University of Tabuk, Tabuk 71491, Saudi Arabia

