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Jammed packings’ mechanical properties depend sensitively on their detailed local structure.
Here we provide a complete characterization of the pair correlation close to contact and of the force
distribution of jammed frictionless spheres. In particular we discover a set of new scaling relations
that connect the behavior of particles bearing small forces and those bearing no force but that are
almost in contact. By performing systematic investigations for spatial dimensions d=3–10, in a
wide density range and using different preparation protocols, we show that these scalings are indeed
universal. We therefore establish clear milestones for the emergence of a complete microscopic
theory of jamming. This description is also crucial for high-precision force experiments in granular
systems.

PACS numbers: 64.70.Q-,05.20.-y,61.20.-p,81.05.Kf

Introduction – The jamming phenomenon is ubiqui-
tous – candies [1], coal [2], and colloids [3] all can jam,
but its microscopic universality remains debated, even
for the most ideal of systems. Like any other phase tran-
sition, the jamming transition can be approached from
the unjammed phase, e.g. by compressing hard spheres
(HS) [4], or from the jammed phase, e.g. by minimizing
the energy of soft spheres (SS) [5]. Yet these two com-
plementary approaches have mostly been developed in-
dependently from each other (see [6] for HS and [7, 8] for
SS). Unlike standard phase transitions, however, the jam-
ming transition is a non-equilibrium phenomenon that
happens deep inside the glass phase [9, 10], and there-
fore different protocols generate different packings, which
may result to conflicting observations. Indeed, all agree
that marginally stable packings of frictionless spheres
average 2d force-bearing contacts per particle [8], but
jammed packings’ density [6, 11–14], parts of their mi-
crostructure [6, 15, 16], as well as their given name [6, 17]
are contentious. Although the jamming “j” point was
proposed to be unique in the thermodynamic limit [5, 18],
there is a growing consensus that jamming occurs over
a range of “j” points [6, 7, 9, 13, 14, 17]. Yet vari-
ous physical origins have been attributed to the jamming
density variation, including structural correlations in the
initial configuration [7], and the presence of small crys-
talline regions only detectable by subtle order metrics
whose minimization should result in a single “maximally
random jammed” state [6, 17]. Others have proposed
the intrinsic existence of a range of densities over which
packings with an identically disordered structure could
be found [9, 13, 14]. A power-law growth of the num-
ber of almost-touching particles near jamming has also
been identified numerically, but different exponents have
been found for HS [4] and SS [15]. If there is microscopic

universality, it has yet to fully emerge.

In this letter we bring a different point of view to the
problem by systematically investigating how the jam-
ming limit is approached from both sides of the transition
and by varying the dimensionality of space from d=3 to
10. This approach allows us to obtain a series of impor-
tant results. (1) Increasing d ≥ 4 suppresses crystalliza-
tion [19, 20] and the “spurious” contribution of “rattlers”.
We can thus show that random jammed packings of
monodisperse spheres with identical near-contact struc-
tural properties can be obtained over a range of densities
(thus confirming results in d=3, 4 [4, 14, 17, 19, 21]),
and that this range broadens with increasing d. (2) We
confirm an earlier suggestion that two exponents α and
θ, corresponding to different physical regimes, control
the mechanical stability of jammed packings [22]. The
first describes the “quasi-contact” regime in which par-
ticles are separated by very small gaps h, whose number
scales as h−α for small h; the second describes the tail
of the “contact” regime, where the number of particles
bearing a small force f scales as fθ. (3) We also pro-
vide a complete characterization of the microstructure of
jammed packings. We show that matching the two above
regimes provides scaling relations between the exponents
and non-trivial scaling functions. We thus conclude that
the mechanical stability of jammed packings is related to
their very complex contact microstructure. (4) We find
these results to be universal in the sense that they are ro-
bust to changes in preparation protocol, packing density,
and, in particular, spatial dimension.

The observation that jammed packings’ properties are
independent of d suggests that a mean-field theory should
be able to capture the jamming phenomenology [23, 24].
One such treatment, the Gaussian replica theory (G-
RT) [10, 13], unifies the description of the glass transition
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and of jamming by exploiting an analogy with discrete
random optimization problems [9, 25]. In this treatment,
the HS and SS approaches to jamming are unified un-
der the assumption that jammed states are the infinite
pressure (for HS) or zero temperature (for SS) limit of
long-lived metastable glassy states [10, 13]. The theory
predicts a growing jamming density range with d [13],
the existence of scaling relations for energy and pressure
relating the two sides of the jamming transition [10], and
makes structural scaling predictions that are remarkably
satisfied at short distances [10, 13]. Yet we show here
that (5) G-RT completely fails to describe the structural
regime that controls jammed packings’ mechanical sta-
bility. Our results (1)-(5) will thus guide both theory
and experiments (through high-precision force measure-
ments [26]) towards a better understanding of the jam-
ming transition.

Packing Generation – We consider a system of N ≥
8000 identical spherical particles of diameter σ in a fixed
volume V , under periodic boundary conditions. The
packing fraction ϕ = NVd(σ/2)/V , where Vd(r) is the
volume of a d-dimensional sphere of radius r, measures
the fraction of space occupied by particles. Jammed
packings are prepared using two different numerical pro-
tocols (see Appendix for details and reduced units defini-
tions). (i) Approaching jamming from densities below it
by Lubachevsky-Stillinger (LS) compressions of HS un-
dergoing Newtonian dynamics while σ grows at a fixed
rate γ=σ̇ [4]. The compression, which is tuned to prevent
crystallization [20, 27], stops when particles are very near
contact, defining the packing fraction ϕγ

p at which the
HS reduced pressure becomes infinite. (ii) Approaching
jamming from densities above or below it by minimiz-
ing the energy E of a random configuration of harmonic
SS. Initial bounds σ− and σ+ that bracket jamming are
evolved iteratively by choosing an intermediate value σm

and minimizing the energy of the current configuration
at σ+ (procedure from above) or at σ− (procedure from
below). The final jammed configurations at the onset of
E 6= 0 have ϕ↓

e from above and ϕ↑
e from below. From

above, the energy vanishes with e = E/N ∼ ∆ϕ2 and
the static pressure P ∼ ∆ϕ, where ∆ϕ is the distance
from jamming [5].

We find the initial σ± to have no measurable effect
on ϕ↑

e . We formally define ϕmin
e = minσ±

ϕ↑
e(σ±), but

any reasonable σ± results in the same final density. By
contrast, ϕ↓

e strongly depends on σ+ (Fig. 1), but is
also independent of σ−. We therefore define ϕmax

e =
maxσ±

ϕ↓
e(σ±). A practical way of constructing both

ϕmin
e and ϕmax

e is to run the energy minimization (respec-
tively from below and from above) starting from σ− = 0
and σ+ large enough to saturate ϕ↓

e to its maximum.
Intermediate packing fractions can then be obtained by
reducing σ+ (Fig. 1). By varying σ± in protocol (ii)
we can thus construct packings over a density interval
[ϕmin

e , ϕmax
e ] that roughly corresponds in protocol (i) to
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FIG. 1. The extrapolated jamming density ϕγ→0
p following

the protocol described in Ref. [27] is extended to higher d
(solid line and crosses), and compared with the G-RT pre-
diction for ϕGCP (dashed line). (top inset) The range of
jamming densities ϕγ

p (squares) is compared to ϕmax
e (cir-

cles) and ϕmin
e (triangles). Note that ϕmax

e ∼ ϕγ=3×10
−4

p and

ϕmin
e ∼ ϕγ=3×10−2

p . (bottom inset) The d=3 increase of ϕ↓
e

with σ+, in terms of the initial effective packing fraction.

[ϕ
γ−

p , ϕ
γ+

p ] with γ− ≈ 3×10−2 and γ+ ≈ 3×10−4 (larger
γ generate mechanically unstable packings). The result-
ing density range is remarkably found to grow steadily
from about 2% in d = 3 to nearly 10% in d = 11 (Fig. 1).
We therefore confirm the similar observation made for
d = 3 binary mixtures [14], where the limited available
density range and the subtle crystal order had left some
room for debate [6]. Note that this range is achieved by
only implementing procedures that compact liquid con-
figurations. Ref. [21] has shown that enlarging the space
of procedures enlarges the range of jammed packings, but
the resulting packings likely have a different microstruc-
ture.

The similarity between the jamming density results of
the two protocols suggests an underlying physical connec-
tion between them. G-RT indeed predicts that packings
exist over a finite packing fraction range, whose upper
limit is the “glass close packing” ϕGCP [13]. By analogy
with random combinatorial optimization problems [25],
the densest packing at ϕGCP is conjectured to require a
time ∼ exp(Na) to generate, the exponent being possi-
bly a ≈ (d − 1)/d, based on a nucleation analysis. The
maximal density that can be reached by the protocols
above, which both run in polynomial time in N , should
therefore be strictly smaller than ϕGCP. Figure 1 shows
it to be the case for all d, in agreement with G-RT.

Scaling functions – To determine the universal struc-
ture of disordered jammed structures, we consider the
pair correlation function g(r) = (ρN)−1〈

∑
i6=j δ(r+ ri −

rj)〉, which is the only relevant structural correlation in
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FIG. 2. Schematic of Z(r) when approaching jamming from
above (a) with protocol (ii), and from below (b) with proto-
col (i). Three distinct scaling regimes can be identified. The
first regime is related to the growth of Z(r) from 0 to z. It
corresponds to interparticle gaps h = |r−σ| ∼ ∆ϕ, and hence
to particles that are in contact when ∆ϕ → 0. The last regime
corresponds to gaps h that remain finite for ∆ϕ → 0. These
particles remain separated at jamming, but these small gaps,
Z(r) − z ∝ h1−α, form a “quasi-contact” regime. The inter-
mediate regime corresponds to gaps h ∼ ∆ϕµ. It matches the
two other regimes and disappears when ∆ϕ → 0.

high d fluids [28]. For numerical convenience, we com-
pute the cumulative structure function

Z(r) = ρ Sd−1

∫ r

0

dssd−1g(s) , (1)

where Sd−1 is the surface of a d dimensional sphere of
unit radius. The function Z(r) thus provides the average
number of neighbors within r of a given particle. Rattlers
are first excluded from the analysis (Appendix), but we
come back to this point below.
For both protocols, Z(r) jumps from 0 to a plateau

at z on a scale proportional to the distance to jamming
∆ϕ, where z is the isostatic average number of contacts
2d plus a correction z − 2d ∝ ∆ϕζ (Fig. 2). For HS,
we find ζ=0.36(2), while ζ=0.53(3) for SS (Fig. 3) [5].
The approach to the isostatic plateau is characterized by
a long power-law tail with exponents θ=0.28(3) for HS
and θ=0.42(2) for SS, but the exponent is independent
of d for a given model. The plateau is extended by a
second power-law regime that corresponds to particles in
“quasi-contact”, carrying no force at jamming. We find
that in this regime the scaling is the same for both pro-

tocols, growing as Z(r)−z ∝ (r−σ)1−α with a universal
exponent α = 0.42(2) until it reaches the trivial large r
regime. Interestingly, the two power-law regimes can be
matched by a scaling function H±, which defines an ad-
ditional intermediate regime. This intermediate regime
shrinks to a point at jamming, but smoothly crosses over
from one power-law regime to the other at finite ∆ϕ.
Consistency therefore sets clear scaling requirements for
the different regimes (see Appendix for scaling analysis)
as detailed in Fig. 2, and verified in Fig. 3.
Force distribution and mechanical stability – The

consequences of these universal scaling relations on me-
chanical properties can be gleaned from the probability
distribution of inter-particle forces f . Here again, we

consider the cumulative distribution G(f) =
∫ f

0
P (f ′)df ′

rather than the pair force distribution P (f), for numeri-
cal convenience.
For HS approaching jamming, the average force f ∝ p.

In the contact regime the force and distance distribu-
tions are also related through a Laplace transform (Ap-
pendix) [4]. The low-force distribution is thus consistent
with G(f) ∝ f1+θ and θ = 0.28(3). For SS approaching
jamming from above, the pair potential sets the relation
between the force and the pair distributions [29] (Ap-
pendix). Here again, the low-force tail is consistent with
θ = 0.42(2). For both protocols, however, the regime in-
termediate between contacts and quasi-contacts results
in deviations from this power-law decay at very weak
forces away from jamming.
The large force regime has been thoroughly stud-

ied [4, 5, 18, 29–32], but the weak force distribution is
much less well characterized. Yet it has been proposed by
Wyart [22] that α ≥ 1/(2+ θ) is required for mechanical
stability. Both the SS values (α = 0.39(1), θ = 0.42(2))
and the HS ones (α = 0.42(2), θ = 0.28(3)), however, in-
dicate a slight violation of this condition. A generalized
stability condition of the form α ≥ (1 − δ/2)/(2 + θ −
δ/2) [22] is consistent with our findings for δ & 0.2, but a
direct test of this extended relation is beyond the scope
of the current analysis.
Rattlers – Rattlers, i.e., particles with no mechani-

cal contacts, must be considered before concluding that
the dimensional and protocol robustness of these results
strongly support a universal microscopic description of
jamming. Because their fraction rapidly decreases with
increasing d (Appendix) [19], and their structural contri-
bution is clearly distinct from that of the other particles
when ∆ϕ → 0, it is reasonable to remove them from
the analysis. Rattlers indeed play essentially no role in
the scaling regimes in high d, while in low d, their inclu-
sion introduces noise in Z(r) and G(f) that obscures the
scaling relations, which may explain why α ≈ 0.5 was
obtained in Ref. [15]. Removing the rattlers reveals the
robust relationship between microstructure and mechan-
ical properties, in support of jamming having a critical
dimension dc = 2 [24].
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FIG. 3. Scaling of the cumulative structure function Z(r) and the cumulative force distribution G(f) in d = 3 upon approaching

jamming from above (a) by SS energy minimization (where e ∝ |∆ϕ|2 → 0 and ε =
√

ed/2), and from below (b) by HS
compression (where p ∝ |∆ϕ|−1 → ∞). (1a) For diminishing e, the height of the plateau (inset) converges to the isostatic
value with ζ=0.53(3). (2a) The small r < σ regime shows the “contact” scaling function Z+(x), which agrees well with the
G-RT prediction (red line). (3a) Rescaling Z(r) using µ = (1+θ)/(2+θ−α) and ν = αµ highlights the behavior of the scaling
function |H−(x)−H−(1)| ∼ 1.2x (brown lines – middle) along with the θ = 0.42(2) (red line – left) and the α = 0.39(1) (blue
line – right) power-law regimes. (4a) G(f), with power-law tail exponent θ = 0.42(2) (dashed line). (1b) For increasing p, Z(r)
grows on an earlier scale r−σ ∼ p−1 to a plateau at the isostatic value, whose height (inset) decays with ζ = 0.36(1). (2b) The
small r − σ regime shows the “contacts” scaling function Z−(x), which agrees well with the G-RT prediction (red line). (3b)
Rescaling Z(r) using µ = (1+ θ)/(2+ θ−α) and ν = αµ highlights the behavior of the scaling function |H−(x)−H−(1)| ∼ 6x
(brown lines – middle) along with the θ = 0.28(3) (red line – left) and α = 0.42(2) (blue line – right) power-law regimes. (4b)
G(f), with power-law tail exponent θ = 0.28(3) (dashed line), compared with the G-RT prediction (solid line).

Comparison with microscopic theory – G-RT, the
only available first-principle theory of jammed packings,
provides predictions for the contact regime scaling func-
tion Z±(x) [10, 13] (Appendix). We find the form of
Z±(x) to be extremely accurate when x is of order 1,
but G-RT fails to capture the ensuing power-law regimes
(Fig. 3). G-RT indeed predicts an exponent θ = 0 for
both protocols, and completely misses the power-law di-
vergence related to α, predicting α = 0. A similar devi-
ation is observed at weak forces. We attribute these dis-
crepancies to the Gaussian assumption for the cage form
of G-RT, which has recently been found to be erroneous
in dense disordered fluids [33, 34]. This non-Gaussian
structure also naturally suggests a microscopic explana-
tion for the breakdown of the normal-mode decomposi-
tion of jammed states [35, 36]. Including a non-Gaussian
cage to RT ought to provide a better mean-field under-
standing of the jamming phenomenology.

Conclusions – Our results show that the jamming
terminology controversy should be resolved by replac-
ing the j-point [5] with the j-line [9, 13], and by distin-
guishing a range of maximally random jammed packings
from their partially crystallized counterparts [6, 17, 21].

They also reveal that the contacts’ complex microstruc-
ture in jammed packings is characterized by universal,
well-defined scaling regimes and by their corresponding
scaling functions. We give precise numerical predictions
for the scaling exponents, and show that the scaling func-
tions are related to the force probability distribution.
These specific predictions can be tested in soft matter
and granular experiments. A preliminary investigation
indeed examined the scaling of the peak of the pair cor-
relation function [3], but our comprehensive predictions
can help experimentalists access the full scaling of Z(r)
and G(f). This feat should be possible once a force res-
olution of ∼ 5%f̄ is experimentally achieved [26].

Finally, it is worth noting that the present study was
limited to zero temperature T in the sense that no ther-
mal motion is allowed in SS and that for HS the energy
interaction scale is infinite compared to T . At finite T ,
the jamming transition is blurred [10], but vestiges of
the scaling relations should remain visible [3]. Future
work will detail how temperature and its associated an-
harmonicities affect the T = 0 scaling relations identified
here [10, 35].
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