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We use determinantal quantum Monte Carlo simulations and numerical linked-cluster expansions
to study thermodynamic properties and short-range spin correlations of fermions in the honeycomb
lattice. We find that, at half-filling and finite temperatures, nearest-neighbor spin correlations can
be stronger in this lattice than in the square lattice, even in regimes where the ground state in the
former is a semi-metal or a spin liquid. The honeycomb lattice also exhibits a more pronounced
anomalous region in the double occupancy that leads to stronger adiabatic cooling than in the square
lattice. We discuss the implications of these findings for optical lattice experiments.
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In recent years, the isolation of graphene flakes [1]
has generated a revolution in solid state physics [2].
Graphene is an atom thick structure with carbon atoms
arranged in a honeycomb lattice geometry, which features
low energy excitations that are massless Dirac fermions.
Given its reduced coordination number, graphene has
also opened a new venue to create exotic quantum phases.
Based on quantum Monte-Carlo (QMC) simulations of
the half-filled one-band Hubbard model, Meng et al. [3]
have argued that a spin liquid ground state may be real-
ized in this lattice geometry at intermediate interaction
strengths. Earlier works had found the ground state to be
a semi-metal in the weakly interacting regime and a Mott
insulator with long-range antiferromagnetic (AF) correla-
tions in the strongly-interacting regime [4, 5]. The find-
ing of an intermediate spin-liquid phase, recently chal-
lenged by another QMC study that considered larger lat-
tice sizes [6], motivated much theoretical work in related
models [7–15].

Experiments on fully tunable artificial graphene-like
lattices now offer a pathway to study the physics above,
and more, in a controlled way [16–19]. Motivated by
those experimental advances, especially by the availabil-
ity of an ultracold lattice fermion setup [18], where on-site
interactions, hopping amplitudes, doping, and tempera-
ture can be fully controlled using Feshbach resonances,
changing the lattice depth and the number of fermions in
the gas, and varying the cooling time [20], respectively,
we study thermodynamic properties and short-range cor-
relations of two-component correlated fermions in the
honeycomb lattice.

We show that such a system exhibits several unex-
pected properties when compared with its square lat-
tice counterpart. For example, at finite temperature, it
may be less compressible in the weakly interacting regime
where its ground state is a semi-metal, while the latter
becomes less compressible in the presence of strong in-
teractions when both lattices have an insulating ground

state. We also identify temperature regimes in which,
surprisingly, (i) nearest-neighbor (NN) spin correlations
are stronger and (ii) a more significant anomalous region
can be seen in the derivative of the double occupancy
with respect to temperature, in the honeycomb lattice
than in the square lattice.

We consider the one-band Hubbard Hamiltonian

Ĥ = −t
∑

〈i,j〉σ

(ĉ†iσ ĉjσ +H.c.) + U
∑

i

n̂i↑n̂i↓ , (1)

where standard notation has been used [21]. At half fill-
ing, in the square lattice, the ground state of this model
is an AF Mott insulator for any U > 0 [21], while, in the
honeycomb lattice, it has been recently argued to be a
semi-metal for 0 ≤ U/t . 3.5, an AF Mott insulator for
U/t & 4.3, and a gapped spin liquid in between [3].

In this work, to study the properties of Hamiltonian (1)
in the honeycomb and square lattices, we utilize two unbi-
ased computational approaches, the determinantal quan-
tum Monte Carlo (DQMC) technique [22–24] and numer-
ical linked-cluster expansions (NLCEs) [25–27]. DQMC
simulations are performed in finite-size systems (with
100 and 96 sites for the square and honeycomb lattices,
respectively) using a small discretized imaginary time
(∆τ × t = 0.05). NLCEs calculations, on the other hand,
provide exact results in the thermodynamic limit but
converge down to a temperature that is determined by
the divergence of correlations and the largest cluster sizes
that we can consider. Here, we include clusters up to the
ninth order in the site expansion and use Wynn and Euler
resummation algorithms to extend the region of conver-
gence to lower temperatures [25, 26, 28]. DQMC and NL-
CEs are complementary as the former provides more ac-
curate results down to lower T for U . w, where w is the
noninteracting band-width (w = 6t for the honeycomb
lattice and w = 8t for the square lattice) while the latter
is better suited for U > w. In the region where DQMC
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statistical errors are small and NLCEs converge, we ob-
tain an excellent agreement between both approaches.

In optical lattice experiments, single site addressability
[29, 30] makes possible an accurate determination of the
equation of state [density (n) vs chemical potential (µ)]
of lattice Hamiltonians of interest. This equation of state
determines the shape of the experimental density profiles
and, when obtained at low enough temperatures, allows
one to identify the presence of a single particle gap in
the spectrum. In the inset of Fig. 1(a), we show the
equation of state in the square and honeycomb lattices
for U/w = 3/2, which is beyond the critical value for the
formation of the Mott insulator in the latter, and for two
values of T/w that are very close in both lattices. With
decreasing temperature, n vs µ reveals the single-particle
gap in the Mott phase by exhibiting a region in which
n barely changes when changing µ. As expected from
their phase diagrams, that gap is greater in the square
lattice than in the honeycomb lattice. This results in the
former system being less compressible than the latter at
half-filling and finite T for large values of U .

By decreasing T for small U , the compressibility (κ =
∂n/∂µ) also reveals the vanishing of the density of states
in the semi-metallic phase. This is shown in the main
panel of Fig. 1(a), where, for weak interactions, the com-
pressibility in the honeycomb lattice is seen to decrease
with decreasing temperature (κ → 0 as T → 0). This
behavior is to be contrasted with the one in the square
lattice, where κ increases as U → 0 and T → 0, signaling
the metal insulator transition [21]. Note that, for finite
T , the behavior above leads to a region in U where κ
is smaller in the honeycomb lattice than in the square
lattice despite the fact that in such a region the ground
state in the former may be a semi-metal while in the
latter is an insulator. This can be understood given the
difference between dispersion relations in the two systems
which, at low T , can lead to less states being available in
the honeycomb lattice than in the square lattice.

Another quantity of much interest, which can also be
measured in experiments with ultracold fermions [31], is
the double occupancy 〈n̂↑n̂↓〉. At half filling, 〈n̂↑n̂↓〉 is
expected to decrease with decreasing temperature. This
can be seen in Fig. 1(b), where we plot DQMC (symbols)
and NLCE (lines) results for the double occupancy vs T
for three values of U in the honeycomb and square lat-
tices. (Note the excellent agreement between the results
obtained utilizing the two approaches.) At high temper-
ature, 〈n̂↑n̂↓〉 is essentially the same for both geometries.
However, as the double occupancy decreases when re-
ducing T , one can see that the results in the honeycomb
lattice depart from, and remain at higher values than
those in the square lattice. As this occurs, an upturn
can be seen in the double occupancy with decreasing T .
Specially for small U/w, this upturn is more pronounced
in the honeycomb lattice than in the square lattice (note

FIG. 1. (Color online) (a) NLCE results for the compress-
ibility vs U in the honeycomb (HC) and square (SQ) lattices,
at half filling, for two values of T/w that are very close in
both lattices. Inset- Equation of state for U/w = 3/2 and the
same two values of T/w as in the main panel. These results
were obtained after three cycles of improvement of Wynn’s
resummation algorithm [26]. The zero chemical potential,
which corresponds to half filling for the particle-hole sym-
metric Hamiltonian, is shifted by U/2 for the non-symmetric
representation of the Hamiltonian in Eq. (1). (b) DQMC
(symbols) and NLCE (lines) results for 〈n̂↑n̂↓〉 vs T in both
lattices at half-filling for U/w = 1/2, 1, and 3/2. Hexagons
(Squares) and solid (dashed) lines correspond to honeycomb
(square) lattice. Statistical error bars for DQMC data are
shown only when they are greater than the symbol size. The
NLCE results were obtained using Euler resummation, and
we report the last order (thick lines) and the one to last order
(black thin lines).

that for U/w = 1/2, it is absent in the latter geometry).

The existence of a region in temperature in which there
is an anomalous d〈n̂↑n̂↓〉/dT < 0 has been discussed in
the context of the Hubbard model in the square lattice.
Early dynamical mean-field theory calculations identi-
fied a significant anomalous region [32], which was lat-
ter found to be marginal in DQMC [33] and NLCE [34]
calculations in two dimensions (2D). Interest in the ex-
istence of such a region developed as it signals adiabatic
cooling with increasing U . This follows from the rela-
tion ∂S/∂U = −∂〈n̂↑n̂↓〉/∂T [32], which implies that at
constant T , the entropy (S) increases (or, that at con-
stant S, the temperature decreases) with increasing U .
DQMC [33] and NLCE [34] calculations have also shown
that, starting with short-range spin correlation for small
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FIG. 2. (Color online) Isentropic curves for the temperature
vs U/w in the honeycomb lattice at half-filling at several con-
stant entropies. The crossover scale, T ∗, is only depicted in
the regime where the ground state is a Mott insulator with
long-range AF correlations. The inset shows the entropy per
particle at T = T ∗ vs U/w. Lines (Symbols) correspond to
NLCEs (DQMC) results. For S=0.20, we also show results
for the square lattice (dashed line and square symbols).

values of U , one can generate exponentially large AF cor-
relations by adiabatically increasing U despite the fact
that there is almost no cooling for weak interactions.
However, the entropy per particle needs to be S . 0.5.

We plot in Fig. 2, the isentropic curves in the T − U
plane for the honeycomb lattice. By comparing those re-
sults with the ones for the square lattice (see Refs. [33, 34]
and the results for S = 0.2 in Fig. 2), it becomes apparent
that adiabatic cooling is more significant in the honey-
comb lattice for small values of U . This occurs in the
absence of a Mott insulating ground state and where the
available number of states at any given T in the honey-
comb lattice is smaller than in the square lattice [see the
compressibilities in Fig. 1(a)]. One may wonder if this
could ease the realization of exponentially large AF cor-
relations in the honeycomb lattice in comparison to the
square lattice, where it remains a major experimental
goal [35]. The region with exponentially large correla-
tions can be identified from T ∗, which is the tempera-
ture at which the uniform susceptibility is maximal for
U beyond the critical value for the formation of the Mott
insulator. T ∗ is also plotted in Fig. 2 and shows that
an entropy per particle S . 0.6 is needed to generate
exponentially large correlations in the honeycomb lat-
tice. This is close to, but above, the entropy required in
the square lattice. The entropy per particle at T ∗ in the
square and honeycomb lattices for half-filled systems, S∗,
is shown in the inset of Fig. 2. Beyond U/w = 1, S∗ can
be seen to be almost the same in both lattice geometries
(S∗ . 0.5).

Probing long-range AF correlations turns out to be
very challenging in optical lattice experiments. As a first

FIG. 3. (Color online) (main panel) Nearest-neighbor spin
correlations and (inset) next-nearest-neighbor spin correla-
tions in the honeycomb and square lattices at half-filling as a
function of entropy, for U = w/2 and 3w/2. Lines and sym-
bols are the same as in Fig. 1(b). Note that, for Szz

nnn
in the

square lattice, only QMC results are shown.

step towards this goal, and towards identifying the AF
Mott insulator in the Hubbard model on the square lat-
tice, experiments have already measured NN spin corre-
lations Szz

nn [36, 37]. They increase as the temperature
is lowered and can be significant even before long-range
order sets in the system. In Fig. 3, we plot Szz

nn in the
square and honeycomb lattices vs S for two different val-
ues of U/w, one below and one above the critical value
for the formation of the Mott insulator in the honeycomb
lattice. That figure shows that, unexpectedly, there is an
extended region in entropies where NN spin correlations
are greater in the honeycomb lattice than in the square
lattice, and that this happens even when the ground state
in the former is a semi-metal or a spin liquid while it is an
AFMott insulator in the latter. At very low entropies, we
find that ultimately |Szz

nn| in the square lattice becomes
greater than in the honeycomb lattice, but the entropy
at which this occurs becomes smaller as U increases.

Our results imply that strong NN spin correlations can
be more easily observed in experiments in the honeycomb
lattice than in the square lattice. They also make evident
that an enhancement of |Szz

nn| should not be taken as a
signature of the Neel state, which does not exist in the
honeycomb lattice for U/w < 0.72 where |Szz

nn| is greater
than in the square lattice (for entropies per particle that
are currently achievable experimentally). This is because
such an enhancement can be a very local effect. We have
also calculated next-nearest-neighbor correlations, Szz

nnn,
in both lattices (see the inset of Fig. 3) and found them
to be always stronger in the square lattice than in the
honeycomb lattice.

Cooling fermions in optical lattices to realize the Neel
state is currently one of the main experimental chal-
lenges [35]. To that purpose, one can take advantage
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FIG. 4. (Color online) (a) Density, (b) entropy, (c) NN
spin correlations, and (d) compressibility for trapped hon-
eycomb lattice systems with N = 6.7 × 103 particles, an
average entropy per particle S = 0.67, U = 3w/2, and
V/w = 1.5 × 10−3, 1.0 × 10−3, and 3.8 × 10−4 (in order of
decreasing temperature). DQMC results are depicted as sym-
bols and NLCE results as lines. Note that, due to the finite
T grids used in DQMC and NLCE calculations, the values of
T in both approaches are very close but not identical.

of the fact that the system is inhomogeneous [a term∑
iσ V r2i n̂iσ, where V is the strength of the trapping

potential and ri is the distance of each lattice site to the
center of the trap, needs to be added to Eq. (1)] and that
this implies that the entropy is unevenly distributed in
the gas [35]. Based on that idea, two recent works, one
on the square lattice [34] and the other on the cubic lat-
tice [38], have shown that starting with a system with
high density in the center of the trap (n ∼ 2) and with
an average entropy per particle larger than S∗, one can
achieve a Mott insulator in the center of the trap with a
local entropy smaller than or equal to S∗ by adiabatically
decreasing the confining potential. The excess entropy is
then stored in the compressible domains with n < 1.

In Fig. 4, we use the local density approximation
(LDA), combined with DQMC and NLCE calculations of
the homogeneous system, to show how the cooling mech-
anism discussed above works in the honeycomb lattice.
(For temperatures like the ones studied here, DQMC cal-
culations have shown that LDA is a good approximation
on the square lattice [39].) Figure 4 depicts the evolu-
tion of the local density (a), local entropy (b), NN spin
correlations (c), and the local compressibility (d) as one
reduces the trapping potential adiabatically in a system
with U/w = 3/2 and in which the average entropy per
particle is S = 0.67. This entropy per particle is higher
than S∗ = 0.47 for U/w = 3/2. One can see in that,
as V is reduced, the density in the center of the trap
changes from nearly that of a band insulator to that of a
Mott insulator [Fig. 4(a)]. At the same time, the entropy
in the Mott insulating region becomes of the order of, or
smaller than, S∗, with the excess entropy being moved to

the metallic wings [Fig. 4(b)]. This results in strong NN
correlations in the Mott insulating domain [Fig. 4(c)] and
a vanishing compressibility in the same region [Fig. 4(d)].
Our results for a specific trapping potential and number
of particles (similar to the ones in current experiments)
can be extended to other values of the trapping potential
and number of particles through the use of the charac-
teristic density [40, 41].
In summary, we have used DQMC and NLCEs to study

experimentally relevant thermodynamic properties and
spin correlations of the Hubbard model in the honey-
comb lattice. We find that, at half filling and weak inter-
actions, the compressibility in this lattice may be smaller
than in the square lattice at low T , despite the fact that
the ground state in the former is a semi-metal and in
the latter an insulator. We also find that the honeycomb
lattice exhibits a more significant anomalous region with
d〈n̂↑n̂↓〉/dT < 0 than the square lattice, which leads to
a stronger adiabatic cooling in the former lattice geome-
try. Remarkably, NN spin correlations in the honeycomb
lattice are stronger than in the square lattice in an ex-
tended region of entropies for all U . We discussed how
these findings are reflected in optical lattice experiments.
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[31] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and
T. Esslinger, Nature (London) 455, 204 (2008).

[32] F. Werner, O. Parcollet, A. Georges, and S. R. Hassan,
Phys. Rev. Lett. 95, 056401 (2005).

[33] T. Paiva, R. Scalettar, M. Randeria, and N. Trivedi,
Phys. Rev. Lett. 104, 066406 (2010).

[34] E. Khatami and M. Rigol, Phys. Rev. A 84, 053611
(2011).

[35] T. Esslinger, Annual Review of Condensed Matter
Physics 1, 129 (2010).

[36] S. Trotzky, Y.-A. Chen, U. Schnorrberger, P. Cheinet,
and I. Bloch, Phys. Rev. Lett. 105, 265303 (2010).

[37] D. Greif, L. Tarruell, T. Uehlinger, R. Jördens, and
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