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Entanglement monotones, such as the concurrence, are useful tools to characterize quantum corre-
lations in various physical systems. The computation of the concurrence involves, however, difficult
optimizations and only for the simplest case of two qubits a closed formula was found by Wootters
[Phys. Rev. Lett. 80, 2245 (1998)]. We show how this approach can be generalized, resulting in
lower bounds on the concurrence for higher dimensional systems as well as for multipartite systems.
We demonstrate that for certain families of states our results constitute the strongest bipartite en-
tanglement criterion so far; moreover, they allow to recognize novel families of multiparticle bound
entangled states.

PACS numbers: 03.67.Mn, 03.65.Ud

Introduction — Entanglement proved itself to be a fun-
damental concept in physics, with applications spanning
virtually all areas of quantum science: these include an-
tipodal topics such as the black hole information paradox
and industrial realizations of quantum cryptographic de-
vices. By definition, entanglement between two or more
particles is given by those quantum correlations, which
cannot be created by local operations or classical com-
munication (LOCC). For the case of more than two par-
ticles, also different classes of entanglement can be distin-
guished. For the quantification of entanglement and also
for the discrimination between entanglement classes one
can use so-called entanglement measures or entanglement

monotones – parameters that indeed are non-increasing
under LOCC. The concurrence and the entanglement of
formation are important parameters of this kind [1].

A central problem for the quantification of entangle-
ment is the fact that nearly all entanglement monotones
are extremely difficult to compute. Indeed, most defini-
tions of entanglement monotones contain nontrivial op-
timizations, such as the optimization over all possible
LOCC protocols or the minimization over all possible
decompositions of a given density matrix. This difficulty
is an important issue for the application of monotones to
real world problems or experiments.

A milestone in the theory of entanglement measures
was the derivation of a closed formula for the concurrence
of two qubits by Wootters in 1998 [2]. In this work, it
was shown how the minimization over all state decompo-
sitions can be done for such a special case. Consequently,
the Wootters’ formula has lead to many applications of
the concurrence, e.g. for characterizing phase transitions
in spin models [3]. In the following years, the formula has
been shown to work also for a special type of multipartite
measures by Uhlmann [4]. Furthermore, the concurrence
can also be computed for some special states with high
symmetries [5].

In the present paper, we generalize the idea of Woot-
ters to compute lower bounds on the concurrence. Our
methods work for higher dimensional bipartite systems
as well as for multipartite systems. Compared with the
large amount of research about lower bounds on entan-
glement measures [6–8] our approach has substantial ad-
vantages: for the bipartite case we discuss a family of
bound entangled states and show that our result gives
the strongest separability criterion so far; for the mul-
tipartite examples, our estimates give the precise value
of the multipartite concurrence, and allow to identify a
novel and simple family of bound entangled states. Fi-
nally, our approach can also be used to estimate other
quantities besides the concurrence, which might be useful
to deal with entanglement monotones based on antilinear
operators and combs [9]. It should be noted that lower
bounds on the concurrence based on Wootters’ idea have
appeared in the literature before [8]; as we will see, how-
ever, the existing approaches are fundamentally limited.
Setting the stage — To start, let us recall the main def-

initions. For a general m× n-dimensional bipartite pure
quantum state ̺AB = |ψ〉〈ψ| on HA ⊗ HB, the concur-

rence [1, 10] can be defined as

C(|ψ〉) =
√

2 (1− Tr̺2A), (1)

where ̺A = TrB(|ψ〉〈ψ|) is the reduced density matrix
of the first particle [11]. A pure state is separable if and
only if its concurrence is zero. The above definitions are
extended to mixed states via the so-called convex roof

construction,

C(̺) = min
{pi,|ψi〉}

∑

i

piC(|ψi〉), (2)

where the minimization is meant as an optimization
over all possible ensemble realizations ̺ =

∑

i pi|ψi〉〈ψi|,
where pi ≥ 0 and

∑

i pi = 1. The decomposition attain-
ing the minimum is said to be the optimal decomposition.
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Clearly, this is a difficult optimization problem, and dif-
ferent estimates have been obtained [6–8].
The bipartite bound — For our approach, we first need

to reformulate the definition of the concurrence. The
pure state |ψ〉 can be expressed in a product basis as
|ψ〉 =

∑m
i=1

∑n
j=1 ψij |ij〉. Furthermore, we can define on

HA the generators of the group SO(m) as Lα = |i〉〈j| −
|j〉〈i|. There are m(m − 1)/2 generators of this type,
similarly, there are n(n − 1)/2 generators Sβ of SO(n)
on HB. Then, a direct calculation for the ψij shows that
one can express the concurrence as (see also Ref. [12])

C2(|ψ〉) = 2
(

1− Tr̺2A
)

=
∑

α,β

|〈ψ|Lα ⊗ Sβ|ψ∗〉|2, (3)

where |ψ∗〉 denotes the complex conjugation. In the fol-
lowing, it is convenient to use a single index for the ma-
trices Lα ⊗ Sβ and we define Jt = Lα ⊗ Sβ, where the
index t runs from 1 to N = [mn(m− 1)(n− 1)]/4.
In order to formulate our bound, we first fix an integer

k. We then choose a subset of indices ~t = {t1, ..., tk} ⊂
{1, ..., N}, where we use the ordering ti < ti+1. More-
over, we can choose k complex numbers ~u = {us} for
which the absolute values are bounded via |us| ≤ 1. Then,
we consider the quantity

∆k(̺,~t, ~u) = max
{

0, λ(1)mn −
∑

i>1

λ(i)mn
}

; (4)

here the numbers λ
(j)
mn are the square roots of the eigen-

values of

X = ̺
(

k
∑

s=1

usJts
)

̺∗
(

k
∑

s=1

u∗sJts
)

(5)

in non-increasing order. Alternatively, one can say that

the λ
(j)
mn are the eigenvalues of the hermitean matrix

Y =

√

√
̺(
∑

s

usJts)̺
∗(
∑

s

u∗sJts)
√
̺. (6)

For our given k, we consider the set of all possible ~t and
choose for any of them a different vector ~u and compute
the corresponding ∆k(̺,~t, ~u). This leads to

(

N
k

)

numbers
and for these we can state our first main result:
Observation 1. Let ̺ be a density matrix acting on

an m×n-dimensional bipartite quantum system and con-

sider for fixed k all the possible ~t and a possible choice

of ~u as discussed above. Then, a lower bound on the

concurrence is given by

C(̺)2 ≥ N

k2
(

N
k

)

∑

~t

[∆k(̺,~t, ~u)]
2. (7)

Especially, if ̺ is separable then ∆k(̺,~t, ~u) = 0 for any

choice of k,~t and ~u.

Before proving this theorem, let us discuss some of its
implications. Eq. (7) is a lower bound for the concurrence
for any given choice of the ~u. In order to obtain a good
bound, the set of the ~u has to be optimized for the given
state ̺. Often this has to be done numerically, but we
will also present examples, where a good choice of the Jts
is given analytically.

Second, for the case of two qubits there is only one
possible generator, namely Lα = Sβ = |0〉〈1| − |1〉〈0| =
iσy. This implies that the only possibility in Observation
1 is k = N = 1, and then Eq. (7) reduces to the well
known formula for the concurrence of mixed states. Of
course, obtaining a closed formula for the concurrence is
a significantly more advanced result as one has to prove
in addition that equality holds. In Refs. [2, 4] this has
been achieved by writing down an explicit decomposition.
This is, however, beyond the scope of the present paper,
we focus on the problem of deriving lower bounds.

Finally, one should add that other researchers have ob-
tained lower bounds on the concurrence by using the for-
mulation of Eq. (3) and ideas similar to the original con-
struction [8]. In these works, the terms |〈ψ|Lα⊗Sβ|ψ∗〉|2
are estimated separately. A single observable Lα ⊗ Sβ ,
however, acts on a 2 × 2 subspace only, and for these
subspaces the criterion of the positivity of the partial
transpose (PPT) is a necessary and sufficient criterion
for entanglement [1]. This implies that the approaches
in Refs. [8] can never detect weak forms of entanglement,
such as bound entanglement which is not detected by
the PPT criterion [13]. On the other side, Observation
1, represents a strong criterion for bound entanglement,
as we will see below.

Proof of Observation 1. First we prove that for a fixed
k, and fixed vector ~t we have that

min
{pi,|ψi〉}

{

∑

i

pi|〈ψi|
k
∑

s=1

usJts |ψ∗
i 〉|

}

≥ ∆k(̺,~t, ~u), (8)

where the minimum is taken over all decompositions
̺ =

∑

i pi|ψi〉〈ψi|. Let λi and |χi〉 be the eigenval-
ues and the eigenvectors of ̺. It is known that any
decomposition of ̺ is connected to the eigenvalue de-
composition via a unitary matrix Uij , namely one has√
pi|ψi〉 =

∑mn
j=1 U

∗
ij(

√

λj |χj〉) [14]. Therefore, we have
√
pipj〈ψi|

∑k
s=1 usJts |ψ∗

j 〉 = (UY UT )ij , where the ma-

trix Y is defined by Yαβ =
√

λαλβ〈χα|
∑k
s=1 usJts |χ∗

β〉.
Since the Jk are symmetric, the matrix Y = Y T is com-
plex and symmetric and we can use Takagi’s factorization
[15] to write Y = V DV T with a real diagonal matrix D.
The entries of D are nonnegative and given by the square
roots of the eigenvalues of Y Y †. Then, following directly
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the argumentation of Ref. [2] we have:

min
{pi,|ψi〉}

{

∑

i

pi|〈ψi|
k
∑

s=1

usJts |ψ∗
i 〉|

}

= min
W=UV

{

∑

i

|[WDWT ]ii|
}

≥ λ(1)mn −
∑

i>1

λ(i)mn,

= ∆k(̺,~t, ~u) (9)

where λ
(j)
mn are the entries ofD in decreasing order. These

quantities are, however, nothing but the eigenvalues of X
in Eq. (5). Therefore, if a state ̺ is separable then a de-
composition into pure states without concurrence exists.
Due to Eq. (3) all the mean values of Jk vanish, which
implies already that ∆k(̺,~t, ~u) = 0.
It remains to show that ∆k(̺,~t, ~u) can give a lower

bound on the concurrence also for entangled states.
Suppose that ̺ =

∑

i pi|ψi〉〈ψi| is an optimal de-
composition of ̺. Then C(̺) =

∑

i piC(|ψi〉) =
∑

i pi

√

∑N
t=1 |〈ψi|Jt|ψ∗

i 〉|2. From the argumentation

above, we know that for fixed k and ~t and fixed t1, ..., tk
the estimates ∆k(̺,~t, ~u) ≤

∑

i pi
∑k

s=1 |〈ψi|usJts |ψ∗
i 〉| ≤

∑

i pi
∑k

s=1 |〈ψi|Jts |ψ∗
i 〉| hold.

Finally, using the rule (
∑k

j=1 xj)
2 ≤ k

∑

j x
2
j and the

Cauchy-Schwartz inequality we can directly estimate the
right-hand side of Eq. (7) as:

∑

~t

[∆k(̺,~t, ~u)]
2 ≤ k2

N

(

N

k

)

C(̺)2. (10)

The details of this calculation are given in the Appendix
A1 [16]. This concludes the proof of Observation 1.
Before proceeding to the examples, let us discuss the

properties of the concurrence that were used in the proof.
The starting point was Eq. (3) and the only further re-
quirement needed was that the fact that the Jt = JTt were
symmetric [17]. Moreover, if At = −ATt were antisym-
metric, then one has for any state |〈ψ|At|ψ∗〉|2 = 0, so
restricting to symmetric Jt can be done without loosing
generality. In summary, the convex roof of any quantity
E(|ψ〉), which can be written as

E2(|ψ〉) =
∑

t

±mt|〈ψ|Mt|ψ∗〉|2, (11)

can be estimated with our methods: one can split each
Mt in a symmetric and an antisymmetric part and esti-
mate the contributions from the symmetric part. The
fact that some of the coefficients mt can be negative
does not matter: using the relation

∑

t |〈ψ|Gt|ψ∗〉|2 = 1
(where the Gt form an orthonormal basis of the opera-
tor space) one can rewrite E2(|ψ〉) as a sum with only
positive coefficients minus a constant term.
Bound entangled states as an example — In order

to show that Observation 1 results in a stronger sepa-
rability criterion than best methods that are currently
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FIG. 1. (Color online) Detecting entanglement in the
Horodecki 3×3 bound entangled state mixed with white noise.
The criterion of Observation 1 (points denoted by OBS1)
is stronger than previously known criteria. For values of p
smaller than the values given by SEP the states ̺a(p) are
proven to be separable. See text for further details.

known, we consider the family of 3 × 3 bound entan-
gled states introduced by P. Horodecki [18]. This fam-
ily of states ̺PHa is not detected by PPT criterion, but
is nevertheless entangled for any 0 < a < 1. The de-
tailed form of these states is given in Appendix A2 [16].
We consider a mixture of these states with white noise,
̺a(p) = p̺PHa + (1 − p)11/9 and ask for the minimal p,
so that the entanglement in ̺a(p) is still detected. First,
we use Observation 1 with the purpose of detecting en-
tanglement and find the optimal Jt via numerical opti-
mization. We finally compare our values with the values
obtained via different known criteria: the Zhang-Zhang-
Zhang-Guo (ZZZG) criterion [19], the Ma and Bao (MB)
criterion [20], and the method based on symmetric exten-
sions and semidefinite programming (SDP) [21, 22]. We
also used the algorithm proposed in Ref. [23] to prove
separability of quantum states. This allows to compute
values of p, for which ̺a(p) is provably separable.
The results are given in Fig. 1. One clearly sees that

Observation 1 provides the best criterion, but the com-
parison with the separability algorithm also suggests that
Observation 1 does not detect all states.
Estimating the multipartite concurrence — For simplic-

ity, we only discuss the three particle case, but our results
can be directly generalized to arbitrary N -partite states.
Let us consider a pure state |ψ〉 in a d × d × d-system.
Its concurrence is given by

Cτ (|ψ〉) =
√

[3− (Tr̺21 +Tr̺22 +Tr̺23)], (12)

where ̺1 = Tr23(̺), etc. are the reduced one-particle
states. For this definition, it directly follows that for pure
states Cτ (|ψ〉)2 = 1

2 ([C
(1|23)(|ψ〉)]2 + [C(2|13)(|ψ〉)]2 +

[C(3|12)(|ψ〉)]2), where C(1|23)(|ψ〉), etc. are the corre-
sponding bipartite concurrences. This definition is ex-
tended to mixed states via the convex roof construction.
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Clearly, Cτ (̺) = 0 if and only if ̺ is a fully separable
state.
A first possibility to estimate the multipartite concur-

rence is to start with an estimate of the bipartite con-
currence for each bipartition (as in Observation 1), and
then estimate the total concurrence Cτ from it. This is
indeed a viable way, in Appendix A3 [16] we present and
discuss a corresponding theorem. The disadvantage of
this approach is that there are states which are separa-
ble for any bipartition, but not fully separable [24]. For
them, this method will not succeed, since all the bipartite
concurrences vanish.
To overcome this limitation, one should note that

Cτ (|ψ〉)2 is of the same structure as Eq. (11): we define
the operators Jt as before, but separately for any biparti-

tion and write J
1|23
t = L1

α⊗S23
β and similarly for the other

bipartitions. Then we have the expression Cτ (|ψ〉)2 :=
1
2

∑

t[|〈ψ|J
1|23
t |ψ∗〉|2 + |〈ψ|J2|13

t |ψ∗〉|2 + |〈ψ|J3|12
t |ψ∗〉|2].

So we have to consider

∆tot
k (̺,~t, ~x) = max (0, λ(1)mn −

∑

i>1

λ(i)mn), (13)

where the λ
(j)
mn are the square roots of eigenvalues of

X tot =̺
k
∑

s=1

(usJ
1|23
ts

+ vsJ
2|13
ts

+ wsJ
3|12
ts

)̺∗

×
k

∑

s=1

(u∗sJ
1|23
ts

+ v∗sJ
2|13
ts

+ w∗
sJ

3|12
ts

) (14)

in decreasing order. Here, ~x = (~u,~v, ~w) denotes a triple of
complex vectors which are normalized as in Observation
1 and ~t = {t1, ..., tk}. For this quantity we can state the
following:
Observation 2. For any arbitrary mixed state on H⊗

H⊗H and for every fixed k and for arbitrary ~x we have:

N

6k2
(

N
k

)

∑

~t

[(∆tot
k (̺,~t, ~x))2] ≤ Cτ (̺)2. (15)

A proof is given in the Appendix A4 [16].
Multipartite Examples — We will consider two simple

examples for three qubits, but these already demonstrate
two interesting points: first, they give an idea how the ob-
servables Jt and the coefficients ~x can be chosen; second,
it turns out that the entanglement criterion in Observa-
tion 2 is strong and allows to identify a novel family of
bound entangled states.
As the first example, we consider the three-qubit

Greenberger-Horne-Zeilinger (GHZ) state |GHZ〉 =
(|000〉+ |111〉)/

√
2 and mix it with white noise, ̺G(p) =

p|GHZ〉〈GHZ| + (1 − p)11/8. Then we take the single-
qubit operator S(a) = |0〉〈1| − |1〉〈0| and the two-qubit
operator L(bc) = |00〉〈11| − |11〉〈00| and from them we
form the operators J i|jk = S(i) ⊗ L(jk) for all three bi-
partitions. Applying Observation 2 for the choice k = 1

and u1 = v1 = w1 = 1, one finds already from a single
term in the sum of Eq. (15) that the three-qubit concur-
rence is bounded by

(Cτ [̺G(p)])2 ≥ 1

6

(3

4
[5p− 1]

)2
. (16)

For p = 1, this reproduces exactly concurrence of the
pure GHZ state. Moreover, this bound shows that the
state ̺G(p) is entangled for p > 1/5. This means that
Observation 2 provides a necessary and sufficient crite-
rion for entanglement for the family of states ̺G(p), since
it is known that for p ≤ 1/5 these states are separa-
ble [25]. In fact, Eq. (16) gives a linear lower bound
on the convex function Cτ [̺G(p)] and this bound coin-
cides with the exact value on the points p = 1/5 and
p = 1. This means that the bound equals the exact value
on the whole interval p ∈ [1/5; 1] and for them we have
Cτ [̺G(p)] = (34 [5p− 1])/

√
6.

As the second example, we consider the three-qubit
W state |W 〉 = (|001〉 + |010〉 + |100〉)/

√
3 mixed with

white noise, ̺W (p) = p|W 〉〈W |+(1−p)11/8. In this case,
we use again the operator S(a) = |0〉〈1| − |1〉〈0|, but for
two qubits we use the L(bc) = |00〉〈10|−|10〉〈00| and from
them we form the operators J i|jk = S(i)⊗L(jk). Applying
Observation 2 for k = 1 and u1 = v1 = w1 = 1, we find
that (Cτ [̺W (p)])2 ≥ (1/96)[p(8+

√
3)−

√
3]2, especially,

the state ̺W (p) is entangled for p > ps =
√
3/(8+

√
3) ≈

0.178.
This is a remarkable value for several reasons. First,

using the separability algorithm from Ref. [23], one can
prove that the states ̺W (p) are fully separable for p ≤
0.177, giving strong evidence that Observation 2 provides
a necessary and sufficient criterion for the family of states
̺W (p).
Second, these calculations show that the states ̺W (p)

exhibit quite peculiar entanglement properties: one can
directly check that for p ≤ 3(8

√
2− 3)/119 ≈ 0.2096 the

states have a positive partial transpose for any biparti-
tion, and using the separability algorithm [23] one finds
that for p ≤ 0.2095 the states are indeed separable for
any bipartition. Hence, for p ∈ [ps; 0.2095] the states
̺W (p) are separable for any bipartition, but not fully
separable. This implies that they are bound entangled:
no entanglement can be distilled from them, even if two
of the three parties join. It was known that such states
exist [24], however, the existing examples required a so-
phisticated construction. It is surprising that the sim-
ple family ̺W (p) includes bound entangled states and it
underlines the power of our approach that these states
can be detected with Observation 2. Finally, the bound
entanglement in the family ̺W (p) can easily be gener-
ated experimentally (contrary to other known examples
of bound entangled states) since adding noise to a pure
state is easy in practically any experimental implemen-
tation.
Conclusion — We have provided a general method to
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bound entanglement monotones by extending in a non-
trivial way the original construction of Wootters [2], an
approach that works for both bipartite and multipartite
concurrence. We leave open the problem of determin-
ing for which states our method gives the exact value of
the concurrence. It would also be interesting to broaden
our approach to the general classification of invariants of
quantum states [9], since this may help to understand the
different entanglement classes for multiparticle systems.
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