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We propose a method for quantization of Lagrangians for which the Hamiltonian, as a function of
momentum, is a branched function, possibly with cusps. Appropriate boundary conditions, which
we identify, insure unitary time evolution. In special cases a dual (canonical) transformation maps
the problem into a problem of quantum mechanics on singular spatial manifolds, which we also
develop. Several possible applications are indicated.
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Physically interesting models based on quantum me-
chanics are often obtained by quantizing classical sys-
tems. The construction of a quantum model from a
classical one requires a quantization prescription, which
should satisfy several guiding principles: it should result
in a model that reproduces, approximately, the original
classical dynamics in appropriate limits; it should pre-
serve appropriate symmetries; and it should exhibit uni-
tary time evolution. These principles can be applied to
the quantization of a wide variety of classical Hamilto-
nian systems, but they do not guarantee a unique result.
(For example, there can be inequivalent quantizations
associated with different self-adjoint extensions of the
Hamiltonian [1].) There are also important, but less fully
developed and possibly less rigorous, procedures using
path integrals that allow one to pass directly from classi-
cal Lagrangian systems, including some singular ones, to
quantum models [2]. In any case, we should regard the
construction of quantum models as a creative process,
open to innovation. Here we propose methods for quan-
tizing broad classes of classical systems with branched
structures in either momentum or position space. We
also suggest several applications.
Branched quantization. Recently [3, 4], we were led

to consider Lagrangians involving higher than quadratic
powers of the time derivatives, and specifically the de-
ceptively simple

L =
1

4
ẋ4 −

κ

2
ẋ2 (1)

In the interesting case κ > 0, the Hamiltonian for this
Lagrangian is singular. Since the momentum involves a
cubic in velocity,

p = ẋ3 − κẋ (2)

we can have either one or three real values of ẋ corre-
sponding to a given value of p, depending on the sign of
|ẋ| −

√

κ
3 . Thus the energy function

E =
∂L

∂ẋ
ẋ− L =

3

4
ẋ4 −

κ

2
ẋ2 , (3)

expressed in terms of p, is a multivalued function with
cusps. See Figure 1 in [3].

Because the Hamiltonian based on Eqns. (2, 3) is not
a single-valued function of p, and yet energy must surely
qualify as an observable, p does not supply a complete set
of commuting observables. Therefore it will not be suffi-
cient to label states with wave functions in (conventional)
momentum space. On the other hand E is a single-valued
function of ẋ, so we might expect to construct wave func-
tions ψ(ẋ). As ẋ runs monotonically from −∞ → ∞, the
evolution of p(ẋ) is non-monotonic, reversing direction at
the cusps. This suggests that we consider wave functions
that depend on p locally, but accommodate backtracking.
Thus, denoting by p± ≡ ±

√

κ
3 the cusp points, we have

three components to the wave function, namely ψ1(p) for
−∞ < p 6 p+, ψ2(p) for p− 6 p 6 p+, and ψ3(p) for
p− 6 p < ∞. All three components cover the range
p− 6 p 6 p+.

A crucial issue is how the different branches join to-
gether, i.e., what are appropriate boundary conditions.
It is instructive to consider a more general class of La-
grangians than Eqn. (1), bringing in a quadratic poten-
tial V (x) = 1

2αx
2. Directly from the Schrödinger equa-

tion we have an equation for the probability density
ρµ(p, t) ≡ ψµ(p, t)

∗ψµ(p, t), defined on the branch labeled
by µ (where µ = 1, 2, 3 for p− < p < p+, µ = 1 for
p < p−, and µ = 3 for p > p+):

∂ρµ
∂t

= i
(

ψ∗
µHψµ − (H∗ψ∗

µ)ψµ
)

= −
iα

2

(

ψ∗
µ

∂2ψµ
∂p2

−
∂2ψ∗

µ

∂p2
ψµ

)

(4)
using, in the second step, V (x) → V (i ∂

∂p
). This sub-

stitution implements the basic Heisenberg commutation
relation, and also reflects the role of p as the generator of
spatial translations. From Eqn. (4) we infer an equation
of the current-conservation type for ρ ≡

∑

ρµ

∂ρ

∂t
+
∂j

∂p
= 0 ; j ≡

∑

µ

iα

2

(

ψ∗
µ

∂ψµ
∂p

−
∂ψ∗

µ

∂p
ψµ

)

(5)
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Eqn. (4) will lead to conservation of the integrated prob-
ability

∫

ρ if we can drop contributions from j at the
endpoints. (Note that j receives contributions from two
branches at each endpoint p±.) We also require our
boundary conditions to be linear, so that our Hilbert
space will support superposition, and so that they lead
to a physically sensible eigenvalue problem for H . The
choices

ψ1(p+) = ψ2(p+) ;
∂ψ1

∂p
(p+) = −

∂ψ2

∂p
(p+) (6)

and their analogues at p− manifestly give the required
cancellation in j. Now consider the eigenvalue problem
for the time-independent Schrödinger equation. For α 6=
0, we get a second-order differential equation for ψ(p).
Thus, on each branch, for each value of energy, there are
two disposable constants, making six altogether. Eqn. (6)
gives us four constraints among these constants, and nor-
malizability (absence of growing modes) at p → ±∞
gives us two more (one for each of ψ1, ψ3). Thus the
number of constraints matches the number of constants,
as in conventional quantum potential theory.

If α = 0 the derivative conditions in Eqn. (6) are not re-
quired and should not be imposed, while if V is a higher-
order polynomial, we must require augmented boundary
conditions. We will discuss those presently, after intro-
ducing a different (dual) viewpoint.

Dual Viewpoint. One can hardly fail to notice that
the manipulations we performed in momentum space, in
connection with probability conservation, resemble ma-
nipulations usually performed in position space. Thus it
is natural to consider what our models look like after the
substitution p → x, x → −p, which preserves the struc-
ture of quantum mechanics. After this substitution, our
multi-valued kinetic energy becomes something perhaps
less unconventional, that is, a multivalued potential. We
may think of a wire with kinks, as in Figure 2a. Inter-
mediate values of x are triply represented, and physical
conditions will be different at different points along the

wire, even if they are represented by the same x, so a
branched wave function is manifestly appropriate to de-
scribe this physical system.

From this dual point of view our quadratic potential
V (x) → V (p) = 1

2αp
2 becomes the conventional ki-

netic energy of a particle with mass m = 1/α, and the
branched kinetic term becomes a multivalued potential
W (x) in position space. Thus we have wave functions
ψ1(x) defined for −∞ < x 6 x+ subject to W1(x), ψ2(x)
defined for x− 6 x 6 x+ subject to W2(x), and ψ3(x)
defined for x− 6 x <∞ subject toW3(x), and boundary
conditions similar to Eqn. (6), after the obvious substitu-
tions of x for p.

Now let us consider a quartic potential V (x) = x4 +
αx3 + βx2 + γx. In dual variables this leads to a kinetic
energy that is a quartic polynomial in p, H = p4−αp3+
βp2 − γp+W (x). We find a probability current (in the

(a)

(b) (c)

FIG. 1: (a) A wire with kinks. (b) A wire network with two
junctions. (c) Box graph for a network with four junctions
and a loop.

dual x space)

j =
1

i

(

ψ† ∂
3ψ

∂x3
−
∂ψ†

∂x

∂2ψ

∂x2
+
∂2ψ†

∂x2
∂ψ

∂x
−
∂3ψ†

∂x3
ψ
)

− α(ψ† ∂
2ψ

∂x2
−
∂ψ†

∂x

∂ψ

∂x
+
∂2ψ†

∂x2
ψ)

+ iβ(ψ† ∂ψ

∂x
−
∂ψ†

∂x
ψ) + γ ψ†ψ (7)

where ψ is a column vector with the requisite number of
components ψµ in each momentum range. We will insure
conservation of probability with the boundary conditions

∂nψ1

∂xn
= (−1)n

∂nψ2

∂xn
0 ≤ n ≤ 3 (8)

at the kinks, provided that α and γ change sign between
the branches. This augmentation of the boundary con-
ditions also leads to a good eigenvalue problem, since we
have both twice as many disposable constants and twice
as many conditions as in the quadratic case.
Inspired by the wire analogy it is natural to consider

networks analogous to the geometries of electric circuit
theory, where we put quantum dynamics on graphs [5]
[6]. Let us consider what is required to insure no flow
of probability into a node where several lines indexed by
µ come together. If the momentum dependence on each
line is simply p2, and we orient each line so all coordinates
xµ flow into the node, then the “Kirchhoff” boundary
conditions

ψ1 = ψ2 = ... ;
∑

µ

∂ψµ
∂xµ

= 0 (9)

insure that no probability accumulates at the node.
These natural conditions give good eigenvalue problems
for the “Compton” tree graph and the box graph dis-
played in Figure 2b,c (and many others). In the Comp-
ton graph, Eqn. (9) yields 2×3 = 6 conditions at the two
nodes, which together with four conditions at infinity for
the external legs gives 10 conditions, as is appropriate
to five lines with two disposable constants each. In the
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box graph, Eqn. (9) yields 4 × 3 = 12 conditions at the
four nodes, which together with four conditions at infin-
ity gives 16 conditions, as is appropriate for eight lines
with two disposable constants each. Though it is simple
and natural, this is by no means the only possible set-up
consistent with the general requirements of the frame-
work of quantum mechanics [5]. We can vary both the
Hamiltonians and the boundary conditions.
Unfolding. Quadratic models with branching in the

dual viewpoint can be unfolded, upon which the eigen-
value problem assumes a conventional form. In equa-
tions: If we write define a real variable χ with

χ ≡ x− x+ + x− for χ 6 x−

χ ≡ − x+ x+ + x− for x− 6 χ 6 x+

χ ≡ x+ x+ − x− for x+ 6 χ (10)

then as χ evolves monotonically from −∞ → ∞ it covers
each branch of x uniquely (as ẋ covered p in our ear-
lier discussion). The boundary conditions Eqn. (6), with
p → x become, upon transcription into the unfolding
variable χ, the statement that ψ(χ) and its derivative are
continuous. Similarly, the boundary conditions Eqn. (8)
for quartics unfold into continuity for ψ(χ) and its first
three derivatives.
Potentials. Now we return to our original problem,

the issue of quantizing the kinetic Lagrangian of Eqn. (1)
allowing for a general potential V (x). Inspired by the
preceding unfolding procedure, we formulate our wave
function in term of a variable that locally reduces to ±p
plus a c-number, but covers all three branches following
the same flow directions as φ̇. Thus we introduce

ξ ≡ p− p+ + p− for ξ 6 p−

ξ ≡ − p+ p+ + p− for p− 6 ξ 6 p+

ξ ≡ p+ p+ − p− for p+ 6 ξ (11)

and the decomposition of wave functions

ψ(ξ) = ψ(ξ)
(

1−H(ξ − p−)
)

+ ψ(ξ)
(

H(ξ − p−)−H(ξ − p+)
)

+ ψ(ξ)H(ξ − p+)

≡ ψ1(ξ) + ψ2(ξ) + ψ3(ξ) , (12)

where H is the Heaviside function. In this formulation p
is realized (piecewise) as a modified multiplication opera-
tor, with slightly different modifications on each branch.
We can use that fact to write the operator V as an explicit
kernel in ξ space. Thus we transform ψ1(ξ) to x space,
where V acts as multiplication, and transform back as
follows:

u(x) ≡

∫

eipxψ1(ξ
′)
dξ′

2π
=

∫

ei(ξ
′+p+−p−)xψ1(ξ

′)
dξ′

2π

(V̂ u)(x) = V (x)u(x)

(V̂ ψ)(ξ) =

∫

e−ipx(V̂ u)(x)dx =

∫ p−

−∞

K1(ξ − ξ′)ψ(ξ′)
dξ′

2π

K1(ξ − ξ′) =

∫

e−i(ξ−ξ
′)xV (x) dx (13)

Note that the result of V̂ acting on ψ1 generally does not
vanish for ξ > p−. It is realized as an operator of the
Wiener-Hopf type.
Performing the same manipulations on in the other

intervals, we arrive at K2 = K∗
1 ,K3 = K1 and

(V̂ ψ)(ξ) =

∫

(

K1(ξ − ξ′)ψ1(ξ
′) +K2(ξ − ξ′)ψ2(ξ

′)

+K3(ξ − ξ′)ψ3(ξ
′)
)

dξ′ (14)

The peculiarity ofK2 arises from the reversed flow of p, as
a function of ξ, in the medial interval. In the symmetric
case V (x) = V (−x) all the Ks are real and equal, and V̂
becomes an ordinary convolution operator.
If V (x) is not symmetric, however, we must reconsider

our procedure, because the V̂ defined in Eqn. (14) is not
Hermitean. Indeed, although each Kj satisfies the her-
miticity condition Kj(ξ

′, ξ) = K∗
j (ξ, ξ

′) the full kernel

K(ξ′, ξ) = K1(ξ
′, ξ)(1 −H(ξ − p−))

+ K2(ξ
′, ξ)(H(ξ − p−)−H(ξ − p+))

+ K3(ξ
′, ξ)H(ξ − p+) (15)

does not. Thus to reach a consistent quantization we
must impose K2 = K1 also (and not K2 = K∗

1 ). The
sign changes for α and γ required in Eqn. (8) foreshad-
owed this conclusion. By adopting this modified quanti-
zation condition, we lose the Heaviside functions and ar-
rive at a (manifestly Hermitean) convolution. The mod-
ified quantization condition entails that the basic com-
mutation relation [ξ, x] = −i involves the unfolded ξ, not
the mechanical p.
For long-range potentials V (x) the formal definition

of V̂ by Fourier transformation leads to derivatives of δ
functions, which must be defined through integration by
parts on the momentum-space wave functions. In this
way we make contact with our earlier discussion of poly-
nomial potentials, and see why smoothness conditions
connecting the different zones in ψ are required, that be-
come more demanding as the order of V increases.
After this work, the mathematical eigenvalue problem

is well-defined and amenable to standard mathematical
techniques. Several examples of branched quantization
are analyzed quantitatively in [7].
Another unfolding method. An alternative and nat-

ural choice of an unfolding coordinate for p is ẋ. The
phase space coordinates (x, ẋ) are noncanonical, but one
can formulate a symplectic structure, Hamiltonian, and
Poisson bracket for them [9], which reduce to the forms
in the momentum range for which the map between ẋ
and p is invertible:

{F,G} =
1

3ẋ2 − κ

[

∂F

∂x

∂G

∂ẋ
−
∂F

∂ẋ

∂G

∂x

]

H(x, ẋ) =
3

4
ẋ4 −

κ

2
ẋ2 + V (x) (16)

With this structure Hamilton’s equation Ḟ = {F,H} re-
produces the equation of motion derived from Eqn. (1).
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In this Hamiltonian formulation time evolution is
uniquely defined except at ẋ = ±

√

κ/3, where the sym-
plectic structure degenerates and nondeterministic mo-
tion may occur [3]). It suggests an alternative approach
to quantization [8].
First-order Lagrangians. Other wide classes of simple,

regular Lagrangians lead to Hamiltonians with cusps or
multi-valuedness. Consider specifically

L(ψ∗, ψ) = f(ψ∗, ψ)∂tψ − V (ψ∗, ψ) (17)

The canonical momentum associated to ψ is πψ =
f(ψ∗, ψ) while the Hamiltonian is numerically V (ψ∗, ψ),
but expressed as a function H = V (ψ, πψ) of the dy-
namical variable ψ and its conjugate momentum πψ. We
may also require that L be real up to a total time deriva-
tive, formally motivated by Hermiticity, or unitarity in
the path integral formulation. The simplest, most con-
ventional form, widely used in many-body physics [10],
is f = iψ∗. But we can also have, for example,

fn = iψ∗nψn−1

fñ = αψ∗n∂tψ − nα∗ψ∗ψn−1∂tψ (18)

or (real) linear combinations thereof. At points where
the implicit function theorem fails, i.e. ∂f/∂ψ∗ = 0, we
can expect to have singularities in H(πψ , ψ).
To make contact with our earlier discussion, let us con-

sider

L = i(ψ∗2ψ − κψ∗)∂tψ − V (ψ∗, ψ)

V = − aψ∗ψ + bψ∗2ψ2 (19)

so that πψ = i(ψ∗2ψ − κψ∗). Upon going to the real
section ψ∗ = ψ, we reproduce the momentum of Eqn. (2)
(with a conventional factor i). Taking (a, b) = (κ2 ,

3
4 )

would reproduce the corresponding Hamiltonian derived
from the Lagrangian of Eqn. (1), with its cuspidal form.
Now, however, we are invited to consider more gen-
eral values of those parameters. We find that multi-
valuedness of the Hamiltonian is generic for κ positive
(but not for κ < 0), while occurrence of cusps is spe-

cial. Cusps can occur when the condition ∂f
∂ψ∗

= 0 oc-

curs together with ∂H
∂ψ∗

= 0. Generically the “singular”

behavior, where the tangent is vertical, occurs at differ-
ent points from the minimum of the energy. (There are
also multiple points, where branches intersect transver-
sally.) The fact that in this broader context the “singu-
larities” are quite mild – from the point of view of intrin-
sic curve theory, they are essentially coordinate singular-
ities – further recommends our quantization procedure,
which patches the branches together smoothly.

Comments:

1. A very common and fruitful procedure in analyz-
ing quantum many-body problems, is to model
the effect of interactions on a given particle by
an effective one-body Hamiltonian (or Lagrangian),

solving the one-body problem, and constructing
a many-body wave function as a suitable prod-
uct, e. g. a Slater determinant. By widening
the class of candidate one-body Hamiltonians, we
can hope to extend this sort of analysis to wider
classes of systems. Dynamical mean field theory
[14] generates complicated time dependence in a
time-translation invariant energy functional, as a
consequence of interactions. Polynomial truncation
of such time dependence, using substitutions of the
type

(

x(t) − x(t − δ)
)n

→ δnẋn [3], with retention
of spatial structure, brings us to the sort of models
considered above.

2. More generally, we might model specific examples
of quasiparticles this way. “Swallowtail” structures
[11] similar to Figure 1 in [3] have appeared in the
description of Bose-Einstein condensates in lattice
traps [12] and in studies of Lieb-Lininger models
[13]. In this context the first-order Lagrangians dis-
cussed above are very plausible effective field theo-
ries, since their structure is quite similar to that of
the microscopic model.

3. A particularly interesting case arises for periodic
potentials V (x). In that case, famously, conven-
tional kinetic terms lead to band structures: The
energy becomes a multivalued function of the quasi-
momentum. Our branched Hamiltonian already
for V = 0 has a sort of band structure, associ-
ated with the branches, in a region of momentum
p− < p < p+ where the limiting p−, p+ are deter-
mined by the form of the kinetic energy, not by
any spatial periodicity. With a periodic potential
added, both sources of banding are effective. Espe-
cially interesting is the possibility of describing dy-
namically induced insulating behavior (Mott phe-
nomenon) at filling fractions determined dynami-
cally by the value of κ.

4. Our earlier work on time crystals was somewhat
schizophrenic. In the classical case [3], we found
systems with motion in their ground state using
kinetic Lagrangians of the type considered above.
In the quantum case [4], not knowing how to treat
such Lagrangians, we used a different mechanism,
based on a more conventional kinetic term, that de-
pended on the discreteness of (generalized) quan-
tum angular momentum. A possible experimen-
tal realization has been proposed [15]. With the
method here described we can quantize the classi-
cal time crystals, and thereby construct much more
general candidate models of quantum time crystals.

5. We initially passed to the dual models to guide
our intuition, but they appear to have consider-
able independent interest. The central observa-
tion, that appropriate, fairly simple boundary con-
ditions, both on wave functions and (odd) inter-
actions, appears to allow construction of unitary
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quantum mechanics on a wide variety of singular
manifolds. One can even relax the boundary con-
ditions, at the cost of allowing probability to flow
into and out of the designated points – in other
words, by allowing the points to have internal de-
grees of freedom. This procedure appears natural,
specifically, in the modeling of black holes, where
(in the Euclidean formalism) the horizon appears
as a sphere attached to a point.

To summarize: We have proposed a method for quan-

tizing a broad class of classical models that previously
eluded consistent theoretical treatment. To do so we had
to address some fundamental issues, and even to tinker
with the usual Heisenberg commutation relations. We
also indicated, with useful concreteness, some immedi-
ately promising applications.

Acknowledgements: AS is supported in part by NSF
Grants PHY-0970069 and PHY-0855614. FW is sup-
ported in part by DOE grant DE-FG02-05ER41360.

[1] J. von Neumann, “Allgemeine Eigenwerttheorie Her-
mitescher Funktionaloperatoren,” Math. Ann., 102

(1929) 49; M. Reed and B. Simon, Methods of Modern

Mathematical Physics, Vol. 2: Fourier Analysis, Self Ad-

jointness (Academic Press, New York 1975).
[2] M. Henneaux, C. Teitelboim, J. Zanelli, Phys. Rev. A36

4417 (1987).
[3] A. Shapere and F. Wilczek, Classical Time Crystals,

arXiv:1202.2537 (2012), accepted for publication in Phys-
ical Review Letters.

[4] F. Wilczek, Quantum Time Crystals, arXiv:1202.2539
(2012), accepted for publication in Physical Review Let-
ters.

[5] P. Kuchment, Proc. Symp. Pure. Math., 291 (AMS,
2008).

[6] V. Kostrykin and R. Schrader, J. Phys. A 32 595 (1999).
[7] A. Shapere, F. Wilczek, Z. Xiong, Calculations for

Branched Quantization, paper in preparation.
[8] A. Shapere, F. Wilczek, Z. Xiong, Models of Topology

Change, paper in preparation.

[9] This observation has been made independently by
L. Zhao, P. Yu, W. Xu, Hamiltonian Description of

Singular Lagrangian Systems with Spontaneously Broken

Time Translation Symmetry, arXiv:1206.2983 (2012).
[10] L. Pitaevskii and S. Stringari, Bose-Einstein Condensa-

tion, (Clarendon, Oxford 2003).
[11] R. Gilmore, Catastrophe Theory for Scientists and Engi-

neers, (Dover, New York 1993).
[12] B. T. Seaman, L. D. Carr, M. J. Holland, Phys. Rev.

A72 033602 (2005).
[13] R. Kanamoto, L. D. Carr, M. Ueda, Phys. Rev. A81

023625 (2010).
[14] G. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev.

Mod. Phys. 68 1 (1996).
[15] T. Li, Z.-X. Gong, Z.-Q. Yin, H. T. Quan, X. Yin,

P. Zhang, L.-M. Duan, X. Zhang, Space-Time Crystals of

Trapped Ions, arXiv:1206.4772 (2012), accepted for pub-
lication in Physical Review Letters.

5


