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Measuring thermal rupture force distributions from an ensemble of trajectories

J. W. Swan, M. M. Shindel∗ and E. M. Furst†
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Rupture, bond breaking or extraction from a deep and narrow potential well requires considerable
force while producing minimal displacement. In thermally fluctuating systems, there is not a single
force required to achieve rupture but a spectrum as thermal forces can both augment and inhibit
the bond breaking. We demonstrate measurement and interpretation of the distribution of rupture
forces between pairs of PMMA particles bonded strongly via the van der Waals attraction. The
otherwise irreversible bond is broken by pulling the particles apart with optical tweezers. We show
that an ensemble of the particle trajectories before, during and after the rupture event may be
used to produce a high fidelity description of the distribution of rupture forces. This analysis is
equally suitable for describing rupture forces in molecular and biomolecular contexts with a number
of measurement techniques.

PACS numbers: 82.70.Dd, 83.80.Hj, 87.80.Ek, 87.80.Nj

It has been long known that the process of bond break-
ing is stochastic. Kramers’ depiction of barrier hopping
showed that the ever present thermal forces restoring
equilibrium at molecular and near molecular scales re-
sult in a spectrum of bond lifetimes [1]. The observa-
tion of variable bond lifetimes and quantification of the
mean time to first cross the barrier enabled development
of transition state theory for predicting chemical reaction
rates [2]. When an external force is used to lower the bar-
rier maintaining the bond, the point at which the bond
ruptures is also stochastic. There exists a distribution of
rupture forces much in the same way there is a spectrum
of equilibrium bond lifetimes [3–6]. This principle ap-
plies equally well to chemical bonds or physical bonds as
demonstrated on the macromolecular scale in the unfold-
ing of proteins [7, 8] and the unbinding of ligand-receptor
pairs [9, 10].

We present a new means of measuring and analyzing
rupture forces based on an ensemble average of trajecto-
ries of colloidal particles during the rupture process. This
has broad relevance extending beyond the usual biophys-
ical contexts. For instance, in out-of-equilibrium, col-
loidal materials such as attractive glasses and gels, there
is a short-ranged, attractive potential which drives par-
ticle aggregation [11, 12]. Such materials possess a yield
stress that relates to the fracturing of an ensemble of
particle-particle bonds. We show that the rupture forces
are statistically distributed much as in protein unfold-
ing or ligand-receptor binding. The rupture force dis-
tribution is measured at the particle level while vary-
ing the depth of the short ranged potential. The short-
ranged potential examined here presumably arises from
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a superposition of van der Waals attraction and screened
electrostatic repulsion – the so-called DLVO interaction
[13]. “Rupture” of a “bond” as commonly defined re-
quires only that the attractive potential is deep relative
to the thermal energy and narrow relative the scale of
observation so that clear distinction between bound and
unbound states can be made. The DLVO potential, like
many colloidal interactions, possesses such qualities.

A dilute, aqueous suspension of colloidal particles
(poly-methyl-methacrylate, PMMA, Bangs Laboratory
PP04N, a ≈ 1.57µm in diameter, zeta potential measured
via electrophoresis of −41± 4 mV in 2 mM KCl, washed
in ultra-pure water, centrifuged and decanted 5x to 20%
strength) is destabilized through addition of the anionic
surfactant (sodium dodecyl sulfate, SDS) at concentra-
tions of 25, 35, 40, 50 mM. Two particles are trapped
by time shared laser tweezers (a 4-W CW Nd:YAG laser,
steered by perpendicular acousto-optic deflectors through
a 63×, 1.2 NA water immersion objective). One trap is
static while the other traces a reciprocating trajectory
at a uniform rate [14, 15]. The addition of SDS attenu-
ates the repulsive electrostatic barrier between particles
and precipitates a secondary minimum in the interaction
potential with a depth that depends on surfactant/salt
concentration [13]. For PMMA in solutions of SDS at be-
tween 25 mM and 50 mM in concentration, the attractive
potential is estimated to have a range less than 50 nm
and a depth of 10 kBT to 50 kBT [16]. Statistical sam-
pling of the rupture is achieved by subjecting the particle
pair to numerous adhesion/rupture cycles (fig. 1).

The optical traps serve as linear force transducers.
Consequently, the rupture force is proportional to the
maximum displacement of the particle from the focus of
the trap immediately preceding rupture. This displace-
ment is measured using back-focal plane interferometry
in which the laser light scattered from the trapped par-
ticle is collected and imaged onto a quadrant photodiode



2

FIG. 1: An illustration of the experiment. Inset: Displace-
ment of the particle from the static trap (blue, thin) and
separation between optical traps (red, thick) as a function of
time. The same quantities are plotted parametrically (black).
The experimental process brings the particles together by de-
creasing the separation between the laser traps (a). When the
particles come into contact, they experience a hard repulsion
(b). Contact also bonds the particles so that when the traps
are retracted, the particles do not immediately separate (c).
Bond rupture results in rapid reduction of the displacement
as the adhesive force binding the particles to one another dis-
sipates (d). Accompanying the figure are cartoons depicting
the relative positions of the particles and the traps throughout
the cycle.

(QPD). The differential light intensity across the quad-
rants is linearly proportional to the displacement of a
particle from the focus of the optical trap. The QPD di-
rectly measures particle displacements with a bandwidth
exceeding 10 kHz. By time sharing the laser and coordi-
nating the sampling of data from the QPD, the displace-
ment of the particle in the static trap and the particle in
the dynamic trap can be distinguished straightforwardly.

A parametric plot of particle displacement in the static
trap, denoted ∆x, versus separation between optical
traps, denoted rT , (fig. 1) shows all rupture events in
a given experiment and reveals that the physical disas-
sociation of colloidal particles is stochastic. Rather than
having a singular, characteristic force value, there is a
distribution of forces associated with escape from the sec-
ondary minimum. These experiments are also sensitive
to non-contact forces. The positive displacement, prior
to contact, in the profile shown in fig. 1 stems from an in-
duced, optical dipole arising from time sharing the laser.
The corresponding polarizations produce a long-ranged,
but weak, repulsion [17]. This repulsion persists up to
the point where the particles nearly contact at which
point the particles are drawn into the DLVO secondary
minimum and bonded tightly. They proceed to interact
through the mutual repulsion provided by the residual
electrostatic double layer.

The average particle trajectories on approach and re-

traction are depicted as a parametric plot of displace-
ment of the static particle from the static trap, 〈∆x〉,
versus the separation between the optical traps, rT , in
fig. 2 as well. Beyond the range of the DLVO and opti-
cal dipole interactions, the static particle resides strictly
within its trap so that 〈∆x〉 ≈ 0. This assumes the
trap moves slowly and hydrodynamic forces are negli-
gible when particles are widely separated. However on
approach (averages denoted with a subscript “A”), the
repulsive optical dipole drives the static particle out of
the trap focus so that 〈∆x〉

A
> 0 until the DLVO sec-

ondary minimum is reached. On retraction (averages de-
noted with a subscript “R”) , the minimum adheres the
particles. While the particles are bonded the tweezers
continue to separate at a constant rate. The displace-
ment of the static particle from its trap grows linearly as
〈∆x〉

R
= g(rT ) = (a − rT )/2. This continues until the

inter-particle bond ruptures and the static particle jumps
to a trajectory analogous to its approach. A definition of
adhesive contact diameter, a, is given by the first value
of trap separation, rT , at which 〈∆x〉

A
= 〈∆x〉

R
when

the short-ranged double layer repulsion acts. The rup-
ture force is that exerted by the secondary minimum to
maintain mechanical equilibrium in the moment before
the rupture event occurs. This is also the force exerted
by the optical tweezers and is proportional to the dis-
placement of the particle from the center of the optical
trap. High frequency measurement of the displacement
is necessary to precisely sample this same moment.

FIG. 2: The displacement of the static particle from the static
trap through many cycles is averaged over many cycles at the
same separation between traps. This is plotted parametrically
against the separation between the optical traps. This data
corresponds to an experiment with 35 mM SDS and a 1.5
pN/s loading rate.
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The magnitude of fluctuation in particle position is in-
herently related to the work required to raster the parti-
cles along the applied trajectory. This quantity exhibits a
notable hysteresis between approach and retraction (fig.
2). The variance in displacement is largely constant dur-
ing approach but decrements slightly as the traps reach
a separation that causes the particles’ surface-to-surface
distance to be commensurate with the width of the sec-
ondary minimum. Diminution of the fluctuations repre-
sents a reduction in free energy upon formation of the
bond. In contrast, rupture is clearly a non-equilibrium
process. The rise in fluctuations far outweighs the pre-
ceding reduction, and thus a large amount of energy is
dissipated during bond rupture. This energetic landscape
is akin to that for an irreversible, bimolecular reaction.
The trapped particles occupy one of two “states” in

the retraction leg of the cycle: either the pair is bonded
so that the displacement of the static particle from its
trap grows linearly: ∆x = g(rT ) or the bond has rup-
tured and ∆x ≈ 〈∆x〉

A
. The latter state may be justi-

fied when the optical traps are much stronger than the
thermal energy so that the particle centers deviate little
from the trap location when driven by Brownian mo-
tion alone. The fluctuations in the particle trajectories
demonstrate aside from the adhered, pre-rupture state,
the optical trap moves slowly enough that the particles
maintain their equilibrium distribution (see fig. 2). Con-
sequently, the probability of finding the static particle
displaced by ∆x from the static trap on retraction when
the traps are separated by rT is

P (∆x, rT ) = W (rT )δ (∆x− g(rT ))

+ (1−W (rT )) δ (∆x− 〈∆x〉
A
) ,

where W (rT ) is the probability of finding the pair of par-
ticles bound in the potential minimum when the traps are
separated by rT and δ(x) is the Dirac delta function. The
rates at which the particles come together and are pulled
apart are implicitly represented in this two-state model.
The average static particle displacement during re-

traction – the expectation value of ∆x with respect to
P (∆x, rT ) – is 〈∆x〉

R
= 〈∆x〉

A
+W (rT ) [g(rT )− 〈∆x〉

A
].

The probability that the particles reside in the potential
minimum when the traps are separated by rT is then the
ratio

W (rT ) =
〈∆x〉

R
− 〈∆x〉

A

g(rT )− 〈∆x〉
A

.

Similarly, the probability of the particles escaping the
potential well (rupturing) at rT , is L(rT ) = −dW/drT .
Here, L(rT ), is the probability density of rupture events
when the traps are separated by rT . By basing the
probability distribution on the difference between ap-
proach and retraction trajectories, the effects of the op-
tical dipole have been eliminated entirely [17]. Contrast
this with measuring the effect of the optical dipole in a

control experiment (something we have done but do not
show) and subtracting it manually from the measured
rupture forces.

As the optical trap is merely a spring stretched a dis-
tance (rT − a)/2 at the moment of rupture, a linear shift
and rescale of the argument of L(rT ) is all that is re-
quired to determine the distribution of rupture forces.
For a Hookean spring force f = k(rT −a)/2 with stiffness
k, L̂(f) = (2/k)L(2f/k+ a) is the probability density of
rupture forces satisfying the normalization criterion that
an integral of L̂(f) over all force is unity.

Notably, the average displacement of the static parti-
cle from the static trap, 〈∆x〉, on approach and retrac-
tion together encode the distribution of rupture forces.
Therefore, hundreds of cycles of approach and retrac-
tion may be performed and through simple analysis a
detailed probability distribution developed. This is far
simpler than manually and individually scanning trajec-
tories, attempting to determine when or where a rupture
event occurred, calculating the rupture force and assem-
bling a histogram of these forces – trivial for a few dozen
trajectories but challenging for more than that. Signifi-
cantly, the statistics of even small rupture forces are in-
corporated into the preceding method while the manual
approach fails to identify rupture events in which the
forces are not many times the thermal energy.

We perform rupture experiments with between 150 and
220 approach/retraction cycles. When the particles are
widely separated, the power spectral density of the dis-
placement of the static particle from the static trap center
is Lorentzian and can be fit to determine the trap stiff-
ness. Therefore, the stiffness of the optical trap is charac-
terized by the spectrum of fluctuations in the static par-
ticle position. The stiffness ranged from 8 to 31 pN/µm
to accommodate deeper secondary minima at higher SDS
concentrations. While the particles are bonded but the
laser tweezers are moving (together or apart), the quad-
rant photodiode measures a linear change in voltage.
When plotted against the separation between the traps,
the slope of this line characterizes the sensitivity (dis-
placement to voltage ratio) of the photodiode. A typical
value was 300 nm/V which provides a spatial resolution
of 1.5 nm displacement or a force resolution of ∼ 10 fN.

The probability of finding the particles bonded when
the laser tweezers exerts a force f on retraction,W (rT ) =
W (2f/k+a) is plotted in fig. 3. In that same fig., we plot
the corresponding probability density of rupture forces.
It has been observed that the rate of loading affects the
distribution of rupture forces [3–5]. The experiments in
fig. 3 were performed with the speed of approach and re-
traction fixed at 0.24µm/s. Because the stiffness of the
laser trap was adjusted to accommodate strong adhesion
of particles on increasing SDS concentration, the rate of
loading was not controlled and varied from 2 pN/s at 25
mM SDS to 8 pN/s at 50 mM SDS. We repeat the exper-
iment at 35 mM SDS and vary the loading rate (see fig.
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FIG. 3: The probability of a bond being un-ruptured W (f)

and the probability density of rupture forces L̂(f) at a given
loading f are plotted for various SDS concentrations.

4). The loading rate may be changed by varying either
the rate of relative motion or the stiffness of the optical
traps. We chose the former. In the limit that motion of
the trap is slow relative to the thermal relaxation rate
and the trap is stiff relative to the thermal stress, these
approaches are equivalent. These conditions describe the
linear response limit, and both are satisfied in the present
experiments.

In fig. 4, the concentration of SDS is 35 mM, and
the interaction potential between the particles is fixed.
Kramers’ barrier hopping theory predicts the rate of es-
cape from a fixed potential well. The logarithmic depen-
dence on loading rate is a consequence of this theory in
the limit that the load aiding escape from the potential
well grows linearly in time [1, 3]. Here, we vary the rate
of separation of the traps while keeping the trap stiffness
fixed and find that the rupture force at which half the
bonds breaks, denoted f50 and given by W (f50) = 1/2,
scales precisely as Kramer’s theory predicts, with the
logarithm of the loading rate (see the inset of fig. 4).
The loading rate is implicitly represented in the two-state
model proposed herein. The inset of fig. 4 shows that
such a model reproduces the result expected from the-
ory and observed in past experiments [3–5]. When the
SDS concentration is varied, there is no such theoretical
dependence on loading rate since the amount of salt in
solution changes the interaction potential.

The broad statistical distribution for rupture forces re-
veals that thermal fluctuations play an inescapable role
in the bond breaking process. The balance of mechanical
forces makes the bond susceptible to breaking by Brow-
nian impulse. We neglected the effect of hydrodynamic

FIG. 4: The probability of a bond being un-ruptured W (f)

and the probability density of rupture forces L̂(f) at a given
loading f are plotted for various load rates for 35 mM SDS.
The inset plots the point at which the cumulative force distri-
bution reaches 50%, denoted f50, as a function of load rate.
The dashed line indicates a logarithmic fit.

interactions in this balance because throughout most of
the cycle relative particle motion is slow and hydrody-
namic forces are weak. While the particles are separated
the ratio of the rate of relative motion to the rate of
particle diffusion (called the Péclet number) is less than
10−1. The particles are equilibrated when widely sepa-
rated. However, just after rupture the particles are sub-
ject to strong hydrodynamic forces – the Peclet number
is nearly 103. Rupture is a highly non-equilibrium event.

The analytical methodology developed herein is widely
applicable and ought to be adopted in future measure-
ments of rupture forces. Expressing the probability of
finding the particles bonded, W based on an ensemble
average of approach and retraction trajectories may be
cast in the contexts beyond colloidal interactions and op-
tical tweezers. For instance, with AFM, on retraction,
the deflection of the cantilever is either changing linearly
while in the bonded state with probability W or follow-
ing the approach trajectory with probability 1−W . The
fraction of bonds at each cantilever displacement can be
calculated directly from these averaged trajectories.
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