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Abstract 

Non-equilibrium molecular dynamics simulations are used to show that the shear 
viscosity of a polymer melt can be significantly reduced when filled with small 
energetically neutral nanoparticles, apparently independent of the polymer’s chain 
length. Analogous to solvent molecules, small nanoparticles act akin to plasticizers and 
reduce the viscosity of a polymer melt. This effect, which persists for particles whose 
sizes are as large as the chain size or the entanglement mesh size, whichever is 
smaller, can be overcome by making the chain-nanoparticle interactions significantly 
attractive. Our simulations allow us to systematically organize the viscosity data of filled 
polymer melts, and thus provide a strong basis from which to predict the flow behavior of 
these commercially important class of materials. 

 

  



 2

Micron-sized spherical fillers increase the viscosity of a pure polymer melt from  to a 

value, , predicted by the Einstein-Batchelor law: 1 2.5 6.2  .. where  is the 

particle volume fraction.1-3 However, for nanosized fillers,  can be reduced or increased 

relative to the pure polymer.4-12 While there have been extensive simulations of 

nanocomposites,13-18 most have focused on the importance of polymer-NP interactions 

on flow behavior.9, 19 The complicated, and poorly understood, dependence of  on NP 

size, chain size, and polymer-NP interactions, are the issues we study here.  

Here polymer chains are represented by the Kremer-Grest model.20 Non-bonded 

monomers interact through the Lenard-Jones (LJ) potential truncated at 2.5 ;  is 

the monomer size and  is the energy scale. Adjacent chain monomers are bonded by a 

FENE potential.20 A bond-bending potential, 1 , with 0.75  is 

used to reduce the entanglement chain length  from 85 to 45.21 We consider four 

different melts with chains of length =40, 100, 200 and 400, respectively, i.e., from 

unentangled to entangled. Two NP models are employed. In the “rough” NP model, a 

collection of LJ atoms, each equivalent to a chain monomer, are held together in an FCC 

lattice. The polymer-NP interaction is the LJ potential with a well depth , which is 

either  (athermal) or 2  (attractive) (  for 3; 2.5  otherwise). The 

interaction strength between two NP beads is  with . (i.e., repulsive). The 

interactions between a pair of “smooth” spherical NPs of diameter  is determined by 

integrating over all the LJ atoms in the two NPs.22-25 The NP mass is equal to its volume 

multiplied by a number density, =1.0. The well depth of the effective NP-NP pair 

potential is thus governed by a Hamaker prefactor, .25 From here 439.48 . We used   so that NP-NP interactions are purely repulsive. While a 

corresponding analysis for NP-polymer interactions would lead to 24 72 , this 
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 yields immiscible composites. A larger 100  has to be used to represent 

“athermal” NP-polymer interactions and 400  is used for favorable attractions ( 4 ). The NP’s are spatially well dispersed under all conditions studied. We 

simulated 500 chains for the neat melts. Filled systems consisted of 500-1033 chains for 

N=400 and 500-2000 chains for N=40, 100 and 200. The NP loading 

 is set to its desired value by varying  and , the number of 

NP and chains, respectively.  

Systems of chain length N=100, 200 and 400, respectively, are equilibrated 

following the double-bridging procedure with 1, and pressure 0.26 The 

N=40 melt is equilibrated by running isobarically at 0, and then at constant volume 

till the chains move their own size. We integrate the SLLOD (which adopts the transpose 

of the qp-DOLLS tensor) equations of motion27 at a strain rate, , with the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) code,28 using a time step of 

=0.005 or 0.01 , where ⁄ . The pressure tensor, which is stored over runs 

10  in length,29 is found to have diagonal components equal to zero with an accuracy 

better than 10-2. The shear viscosity is calculated using , where  is the xz-

component of the pressure tensor along the flow and gradient directions, respectively. At 

high , the time-dependent viscosity reaches a plateau when 1 , after an initial 

overshoot. This plateau is used to estimate . For low  there is no such overshoot.  

All four neat melts exhibit shear thinning (Fig. 1). The N=100 and 200 data reach 

their Newtonian plateaus for  10-5 and 10-6, respectively, while the N=400 melt does 

not plateau even for 10-7. For  10 , we need 75 days on 216 processing cores 

on the Cray XE6 Hopper at NERSC to get an estimate of . Runs for lower   are thus 

infeasible, and so the results for N=400 may not be in the Newtonian regime. Figure 1 
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also presents results for two different sized rough NPs at 0.11. For these athermal 

polymer-NP mixtures,4, 5 the insets show that the ratio of viscosity of the filled system to 

the neat melt is essentially independent of , especially for large , and changes by 

~20% even for the smallest particle size. Thus, even though we do not access 0 for 

N= 400, we can still draw meaningful conclusions on the NP’s effect on . 

Figure 1: Reduced shear viscosity,  vs. reduced strain rate . Neat and 
NP-filled melts are represented by open and closed symbols, respectively, at a fixed 0.11  for N=40 ( ), N=100 ( ), N=200 ( ), and N=400 ( ). (a) 1  (b) 10 . Inset shows the ratio of the filled to neat melt viscosity as a function of  . 

Figures 2(a) and (b) show the effect of  on  at 0.11 for N=40 and 400, 

respectively. We see that a rough NP with  behaves akin to a smooth NP with 

=100  - this  therefore corresponds to an athermal nanocomposite, and particle 

smoothness does not alter the conclusions drawn. For N=40 [Fig. 2(a)] and neutral 

rough NPs the  is lower than that of the pure melt, , for  5σ. The results for the 

longer chains are qualitatively consistent, except that the crossover to viscosity ratios 

greater than 1 occurs for progressively larger  [Fig. 2(b)]. Predictably, the viscosity 

becomes larger than the athermal case if the NP-polymer interactions are favorable 2 ) [Figs. 2(a) & (b)]. For N=40 the viscosity is larger than the neat melt for all 

, while for N=400 we get  reductions for small enough particles. Next, we consider 

the role of  on  for neutral NPs. The N=40 shows a monotonic increase for 
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10 , consistent with the Batchelor law (Fig. 2c). In contrast, for , the viscosity 

decreases with increasing  (Fig. 2c). Similarly, the N=100 melt shows a monotonic 

increase for 10  (Fig. 2d). For 8  in N=100 and 10  in N=400, the  

initially drops with increasing , and then it increases beyond the pure melt value for 

large enough NP loading, as observed experimentally.6  

Figure 2: Effect of NP size and type of interaction between the NP and polymer on 
shear viscosity for (a) N=40,  0 ;  (b) N=400, 10  for = 0.11. Dependence 
of viscosity on loading of neutral NP for (c) N=40 with (  = 10σ and 1σ) as  0; (d) 
N=100 with (  = 8 and 10σ) as  0   and N=400 with (  = 10σ) at 10 . In 
all the plots the closed symbols correspond to rough NP, while the open symbols to 
smooth NP. In (c) and (d), we show the Einstein and Batchelor predictions. 

We now examine the molecular origins of these results. Adding NP to a melt can 

either change the local friction or . Riggleman et al.30 showed that “athermal” NPs 

reduce  from 62.3 (pure melt) to 56.4 (N=500, 5 , =0.15). In contrast, 
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completely repulsive mixtures of NPs and polymers (N=500, 10 ) show that  

increases with NP loading.31 Before discussing our primitive path analysis (PPA) results, 

we touch on a philosophical point. In the limit of large particles ( 5 ), it makes 

sense to fix the particles, which are much less mobile than the chains, in the PPA. (Note 

that we found little difference by fixing the particles or not in this limit.) In contrast, 

allowing smaller NPs to move or not makes a qualitative difference. We estimate  for 

the N=400 melt with smooth NP at = 0.11 by allowing the NP to move.32 

Figure 3: (a) Effect of  on  for N=400 melts filled with smooth NPs with Anp=100ε 
and 0.11. (b) Net packing fraction, NPF, as a function of smooth NP size for 0.11 . The lines represent the pure melts; (c) Effect of NP-polymer bead 
interaction strength on NPF for N=400 melts and rough NPs. 0.11.  Line 
represents the pure melt. (d) Dependence of  on NPF for the N=40 melt with neutral 1  NPs. Line is the pure melt. 

Figure 3a plots (N/Ne), normalized by its pure melt value. The  increases 

significantly when particle size decreases (Fig. 3a), implying that these small NPs act 
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akin to plasticizers. The  recovers to its bulk value for 10 , a result that should 

be contrasted to the work of Li et al.31 on repulsive systems, who found a decrease in 

entanglement for the same NP size. Tuteja et al.5 found that  is unaffected by NP for 

5 nm. On assuming a Kuhn length of 1nm, we also find that  practically equals 

its bulk value for these .5 We conclude that our results, which include athermal 

attractions between the NP and the chains, are perhaps more relevant experimentally 

than calculations that treat these systems through purely repulsive interactions. 

Next we consider free volume effects.4, 5 At 0 the density must change on 

adding NPs to the polymer. Fig. 3(b) quantifies this idea by plotting the net packing 

fraction, , where V is the simulation volume, as a function of  at 0.11. As anticipated, adding athermal small NPs causes a strong drop in the NPF, 

with this result being reversed by NP-polymer attractions [Fig. 3(c)] or by increasing . 

In addition to equation-of-state effects, Ganesan et al.17 suggested that 

hydrodynamic effects and wall slip could alter the monomer friction coefficient. To 

understand the relative importance of flow vs. free volume effects, we examined the 

filled N=40 melt’s viscosity as a function of NPF [Fig. 3(d)]. Obviously, the pressure 

changes in these calculations. At a NPF  0.45, which corresponds to =0 for the filled 

system, the 38. For the filled melt at NPF=0.46, which is the neat melt density, we 

find 50. Since 57 for the pure melt at =0, it follows that 2/3 of the viscosity 

drop on the addition of NP to an unentangled melt is due to equation-of-state effects, 

with 1/3 to other flow factors. We conclude that for small particles the changes in  have 

contributions from entanglements, flow and equation-of-state effects. In contrast, 

changes in entanglement effects appear to play a minor role for large particles.  

We now place our results in the context of the unexplained experimental trends 

for the viscosity of filled polymers.4-12 Fig. 4a plots simulation data for , which are 
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germane to the experiments where the NP and the melts have the same chemical 

structure,4, 5 while chemically dissimilar mixtures are considered in Fig. 4b.6-12 

Figure 4: Polymer radius of gyration vs. NP diameter. The experimental data correspond 
to ( ) 1⁄ , ( ) 1⁄ , ( ) 1⁄  at low NP loading and ( ) is where  shows 
an initial increase of viscosity with NP loading followed by a decrease. (a) Experimental 
data for athermal systems is from 4, 5. Systems above the orange line should be miscible. 
The black “viscosity” line is extrapolated from our simulations. (b) Corresponding plot for 
“thermal” NP/polymer systems. Only the viscosity line is shown. Data are from 6-12. 

In Fig. 4a the “solubility” line from 33 suggests that the experiments correspond to 

miscible NP-polymer mixtures. The “viscosity” line, from our simulations, separates 

regions where the nancomposite’s  is smaller than vs. larger than the pure melt. (A 

Kuhn length of 1nm was used to compare the simulations to experiments.) The slope of 

the viscosity line is quite different for short vs. long chains. For short chains, the viscosity 

crossover occurs when the NP size is comparable to . In contrast, our limited data for 

large  suggest that the line is nearly vertical. Apparently, the RMS end-to-end distance 

for an entanglement strand ( √2.2 45 10 ), a proxy for the entanglement mesh size 

defines the crossover.2-6, 17 (The entanglement molecular weight of PS ~14 kDa34 leads 

to ~ 8.2 nm, which is comparable to the simulation estimates.) This “viscosity” line 

satisfactorily explains most of the experimental trends for the athermal nanocomposites. 
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The only exceptions are the two blue triangles where the viscosity initially increases on 

adding NPs, but then decreases. Fig. 4b for polymers filled with inorganic NPs,6-12 

emphasizes the critical role of NP-polymer miscibility – the experimental data on the 

bottom right of Fig. 4(b) would be immiscible if the systems were athermal. While we 

expect system-to-system variations, Hooper and Schweizer suggest that miscibility is 

only attained over a narrow range of NP-chain attractions.35 We therefore characterize 

all miscible blends through the ansatz that 2 . Empirical justification for this 

sweeping assumption comes from the fact that the viscosity line derived in this manner 

serves to reliably separate experimental systems with increased vs. reduced viscosity 

relative to the melt, with one exception (Fig. 4b).7 Since Figs. 4 organize a relatively 

comprehensive set of available experimental data, we believe that it embodies a first cut 

at a “universal” behavior for this class of problems, and provides us with a quantitative 

basis to understand the flow behavior of these systems. 
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