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In this letter, we show through numerical simulations and analytical results that overlapping
multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (∝ N2)
electrostatic perturbations driven by beat waves between pairs of laser beams. For typical inertial
confinement fusion experiments conditions, hundreds of such beat waves are driven in mm3-scale
plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam
energy transfer, with a reduction of linear gains by a factor ∼4-5, and can strongly modify the
overall hydrodynamics evolution of such laser-plasma systems.

Experiments on large scale laser facilities exploring
High Energy Density Physics or Inertial Confinement Fu-
sion (ICF) often require overlapping multiple intense (>
1014 W/cm2) laser beams in plasmas [1]. This leads to a
wide range of new and complex multi-beam laser-plasma
interactions. A particularly important phenomenon is
cross-beam energy transfer (CBET) [2], which was pre-
dicted to play a crucial role for indirect drive experiments
on the National Ignition Facility (NIF) [3] and has sub-
sequently been used to advantage via laser wavelengths
adjustments to tune the ICF targets’ implosion symme-
try [4–6]. On the other hand, for direct-drive experiments
at the Omega facility, CBET tends to reduce the laser en-
ergy absorbed in the corona by transferring energy from
the incoming light into the refracted outgoing light [7, 8].
In such situations, the overlap ofN laser beams generates
N(N−1)/2 individual beat waves whose phase velocities
are fixed (determined by the laser beams’ wavelengths
and directions), and can be near the ion acoustic veloc-
ity due to either small wavelength adjustments as is done
on NIF (cf. Fig. 1), or to sonic flows as in direct-drive
or planar foil experiments [9]. Each beat wave drives an
electrostatic potential via the ponderomotive force. The
resulting density perturbation is driven resonantly if the
beat wave’s phase velocity matches the phase speed of an
ion acoustic wave in the reference frame of the plasma.
The scattering of laser light on these driven fluctuations
transfers momentum and energy to the plasma: for each
photon scattered from laser beam n to laser beam m,
the momentum and energy transferred are respectively
δp = ~(kn − km) and δU = ~(ωn − ωm), where ωm,n

and km,n are the photons’ frequencies and wave vectors.
Thus, overlapping many of these driven waves can di-
rectly affect the laser energy flux direction and the hy-
drodynamics evolution.

In this letter, we show that the interactions of many
beat waves with a plasma leads to strong stochastic
heating of the ions. For typical indirect drive ICF
plasmas [10], we calculate ion heating rates of several
keV/ns. The acoustic velocity is consequently increased
by ≃50% in less than a nanosecond; the local hydro-
dynamics conditions in the laser beams overlap region

are thus largely dominated by the stochastic ion heating
mechanism, which takes place on time scales shorter than
ion heat convection (due to plasma flow), ion conduction
and electron-ion temperature equilibration. This can
in turn strongly modify the laser-plasma interaction
mechanisms that take place in such regions, such as
CBET. Using a particle code with binary collisions, we
show that weak turbulence from the beat waves creates
an energetic tail in the ion distribution function over
time scales of a few ion bounce periods. Then, on time
scales longer than the ion-ion collision time, collisions
transfer the energy from the hot tail into the bulk; the
distribution recovers a nearly-Maxwellian shape, but
with a rapidly-increasing temperature and a change in
average (flow) velocity. For NIF conditions, we calculate
a reduction of CBET linear gains by a factor ∼4-5. The
process eventually stabilizes as the ion acoustic velocity
becomes larger than the beat waves’ phase velocities.

FIG. 1. Schematic view of a NIF hohlraum laser entrance
hole; 96 laser beams grouped in 24 quadruplets overlap in a
mm3-scale plasma at each laser entrance hole, leading to 276
possible individual pairs. Each pair of quads (m,n) drives
a beat wave with a phase velocity vφ,k = kωk/k

2, where
ωk = ωn − ωm and k = kn − km. The beat waves’ vφ,k

are represented on the right (green arrows), for a wavelength
separation between inner and outer beams of ∆λ=2 Å (with
λout=351 nm and λinn=351.2 nm).

Our numerical model calculates the ion distribution
function fi(r,v, t) by integrating equations of motion of
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particles in the presence of many beat waves and col-
lisions; the space-average of the resulting particle dis-
tribution function is then used to calculate the self-
consistent evolution of the fields. Each beat wave be-
tween two lasers (m,n) with frequencies ωm,n and wave
vectors km,n creates a ponderomotive potential φp,k =
1
2
φ̂p,k exp[iψk] + c.c. oscillating at the beat wave’s phase,
ψk = k ·r−ωkt+ νk, where ωk = ωn−ωm, k = kn−km

and νk is a random phase term between 0 and 2π which
accounts for the fact that laser beams on large scale facil-
ities are optically smoothed and thus uncorrelated with
one-another. Beat waves from two laser beams with dif-
ferent frequencies (ωk 6= 0) have a finite phase veloc-
ity vφ,k = kωk/k

2. The ponderomotive potential acts
on the electrons to create a charge separation which re-
sults in an electrostatic potential φk = 1

2
φ̂k exp[iψk]+c.c.

which acts on both the electrons and the ions. The equa-
tions of motion for the ions are integrated with a Runge
Kutta method in the presence of many of these electro-
static potentials and with ion-ion collisions, midvi/dt =
−qi

∑

k ∇φk(r, t) + C̄i−i, where mi and qi are the ion
mass and charge, and C̄i−i is a binary ion-ion collision
operator based on Ref. [11]. Here we assume that the
electrons response is linear and that their averaged distri-
bution remains Maxwellian with a constant temperature.
As will be discussed later, only ion-ion collisions will be
significant for ICF-relevant conditions; electron-ion ther-
mal equilibration rates are typically too slow for the ions
to affect the electron temperature.

The resulting ion distribution function is used to self-
consistently calculate the evolution of the electrostatic
potentials. The main assumption of the model is that
these potentials have spatially uniform, slowly time-
varying envelopes, φ̂k = φ̂k(t), and follow the time-
evolution of the spatially averaged distribution function.
Wave-wave couplings are neglected. In order to calcu-
late the electrostatic potentials, the ion distribution is
decomposed into its spatial average and the responses to
the waves, fi(r,v, t) = fi0(v, t) +

∑

k δfik(r,v, t), where
fi0 varies slowly compared to the fast oscillations of the
beat waves. Poisson’s equation connects each beat wave’s
electrostatic potential to the resulting density perturba-
tion: −∇2φk = 4π

∑

α

∫

d3vδfαk where α is the particle
specie (= e or i). Combining it with Vlasov equation,
[∂t+v ·∇−(qα/mα)

∑

k ∇(φk+δeαφp,k)∂v ]fα = 0, where
δαα′ is a Kronecker delta, we get the expression for the
electrostatic potential driven by the ponderomotive po-
tential: (1+χek +χik)φ̂k = −χekφ̂p,k. For hot ICF plas-
mas (≥ 1 keV), the phase velocities are negligible com-
pared to the electron thermal velocity, vφ,k ≪ vTe, so the
electron susceptibility is χek ≃ 1/(kλDe)

2 (calculations
with electrons showed no changes in their distribution
function; in the following we will thus only consider the
evolution of the ion distribution). On the other hand,
the fastest beat waves’ phase velocities are larger than
the ion thermal velocity. The ion susceptibility evolution

follows the space-averaged ion distribution:

χik(t) =
4πq2i
k2mi

∫

k ·
∂fi0(v, t)

∂v

d3v

ω − k · v
. (1)

The amplitudes of the electrostatic potentials thus fol-
low the slowly-varying space-averaged distribution func-
tion fi0,with:

φk(r, t) = |φ̂p,k|
χek

|1 + χek + χik(t)|
cos[ψk(r, t)]. (2)

The integration in Eq. (1) is carried out numerically
similarly to Ref. [12]. The ponderomotive potential
φp,k created by two laser beams (m,n) with circular
polarizations (or, equivalently, two NIF quadruplets
with a “checkerboard” polarization arrangement,
which behave like two temporally coherent but spa-
tially incoherent beams [6]) crossing at an angle θmn

is |φ̂p,k| = 1
4
(mec

2/e)aman(1 + cos2 θmn)
1/2, where

a = vosc/c ≈ 0.85(I18λ
2
µ)

1/2 is the normalized laser
vector potential (I18 is the laser intensity in units of
1018 W/cm2 and λµ its wavelength in microns). In the
case of two beams with linear and parallel polarizations,
we have |φ̂p,k| =

1
2
(mec

2/e)aman.

We present calculations for the entrance hole of a NIF
hohlraum, where 96 laser beams grouped in 24 quadru-
plets or “quads” cross, generating 276 beat waves over-
lapping in a mm3-scale plasma (cf. Fig. 1). The quads
are grouped in four cones propagating at 23.5◦ (4 quads),
30◦ (4 quads), 44.5◦ (8 quads) and 50◦ (8 quads) from the
hohlraum axis; the “inner quads” (23.5◦ and 30◦ ) have
an average intensity of 5 × 1014 W/cm2 and the “outer
quads” (44.5◦ and 50◦ ) are at 1015 W/cm2. The initial
electron and ion temperatures are 2.8 and 0.8 keV re-
spectively, the electron density is 3% of critical, and the
plasma is He (Z=2); these are typical conditions at the
beginning of the main (“fourth”) NIF laser pulse. The
128 beat waves between an inner and an outer quad have
a finite phase velocity, set by a wavelength shift of 2
Å (at λ0=351 nm) between inner and outer quads [3, 4].
The 148 others, generated by pairs of quads with simi-
lar wavelengths, are stationary in the laboratory frame,
vφ=0. The ion-ion collision time is τii ≃60 ps. On the
other hand, the thermal equilibration time for the elec-
trons is τe|i ≃ 6 ns [13]; this is too slow to be relevant
for our conditions and is why we only consider ion-ion
collisions in our model.
The evolution of the ion distribution function is shown

on Fig. 2 for typical NIF conditions. The 276 green
dots represent the beat waves’ phase velocities. Due to
the NIF geometry, the problem is axisymmetric around
z, the hohlraum axis (cf. Fig. 1). The ion distribution
is initially Maxwellian at t=0. The beat waves having
their phase velocities near the acoustic velocity cs (cyan
iso-contour line) drive the strongest electrostatic pertur-
bations. Overall, the initial electrostatic potentials am-
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FIG. 2. Ion velocity distribution function log[fi(v)] from our
particle code, plotted vs. vz and vr (the distribution is ax-
isymmetric along z) at times t=0, 40, 200 and 500 ps. The
cyan contour line represents the ion acoustic velocity cs, and
the green dots represent the 276 beat waves’ phase velocities
for the NIF geometry with ∆λ=2 Å. The initial plasma condi-
tions are Te=2.8 keV, Ti=0.8 keV, ne/nc=3% and Z=2 (He),
and the laser intensities are 5× 1014 and 1015 W/cm2 for the
“inner” and “outer” quads, respectively.

plitudes φ̂k are in the range [10−6 − 10−5]mec
2/e, corre-

sponding to density perturbations δn/n ≈ [10−4−10−3].
The ion bounce periods τb are of a few ps.

In the early stages, for times smaller than the collision
time (t≤ τii ≃60 ps), some potentials φ̂k(t) exhibit non-
linear oscillations at τb due to trapped particles, as de-
scribed in Ref. [14]. However, after a few bounce periods,
turbulence starts to dominate, diffusing particles between
multiple overlapping resonances. The non-linear oscilla-
tions disappear, and an energetic tail starts to develop in
the ion distribution near the velocity of the fastest beat
waves, around 3 to 4 times the initial ion thermal veloc-
ity vTi0, as is shown in Fig. 2 at t=40 ps. The total
kinetic energy of the particles rapidly increases due to
continuous injection of ions into the hot tail.

At later times, for t ≫ τii, ion-ion collisions transfer
the energy from the hot tail into the bulk, leading to an
increase in ion temperature. After 200 ps, the bulk of
ions has broadened and reached a thermal velocity close
to the phase velocity of the fastest drivers; the tail that
was present at t=40 ps is now barely visible. At t=500
ps, the distribution resembles a drifting Maxwellian with
〈vz〉 ≈ 0.6vTi0 = 0.85× 107 cm/s.

The thermal energy of the particles and their aver-
age velocity are shown in Fig. 3a-b. The ion temper-

ature increases up to 4 keV in less than a nanosecond,
and the particles acquire a drift 〈vz〉 > 107 cm/s due
to momentum deposition [15, 16]. The acoustic velocity
cs = [(ZkBTe + 3kBTi)/mi]

1/2 increases from 4.4×107

cm/s to 6.7×107 cm/s in 1 ns.

FIG. 3. Time evolution of: a) ion temperature (defined as
kBTi =

1

3
mi(〈v

2〉− 〈v〉2)), b) average velocity, and c) average
exponential CBET spatial gain for a NIF inner beam. The
black curves are the results from the particle code, and the
dashed red are from the quasi-linear reduced model.

Such ion heating rates are in qualitative agreement
with simple estimates based on the conservation of action
[17] during the CBET process, using experimental mea-
surements. Typically, symmetric implosions on NIF for
420 TW shots require transferring 100-150 TW between
laser beams in a ≃mm3-size plasma near the hohlraum’s
laser entrance holes [18]. The power density deposited
into plasma waves is therefore [100-150] TW×δλ/λ0 ≃
60 to 120 GW/mm3 for wavelength separations between
laser beams of 2-3 Å (and λ0=351 nm). Assuming an
average ion density ni = 1.35× 1020 cm−3, and that all
the waves energy eventually gets converted into heat, we
get ion heating rates of ∼2-5 keV/ns.

Calculations with an initial flow velocity at t=0 (i.e.
where the distribution at t=0 in Fig. 2 would be cen-
tered around 2vTi0, slightly below Mach 1, as is the
case at the entrance hole of NIF hohlraums) show sim-
ilar heating rates and tend to equilibrate at similar av-
eraged velocities, near the velocity of the fastest beat
waves (near 2vTi0 in our case). Indeed, the flow energy
Uflow = 1

2
mi〈vz〉

2 deposited in the plasma via momen-
tum deposition remains small compared to the thermal
energy gained by the system (+0.4 keV vs. +3 keV from
0 to 1 ns in our case). Also, note that since the volume
where all the beams overlap is of the order of a mm3, the
flow (similar to a Mach 1 nozzle flow near the entrance
hole) will replace the ion population in that volume in 2-
3 ns; therefore, calculations on times scales ≤1 ns should
not be affected by changes in background conditions.

The effect of ion heating on CBET is represented in
Fig. 3c, which shows the average of the spatial gain ex-
ponent over the NIF “inner quad”. The gain γm for a
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quad m (such that ∂za
2
m = γma

2
m) is defined using the

convective growth formula [4, 15]:

γm =

24
∑

n=1

−χ2
ekIm(χik)

|1 + χek + χik|2
k2a2n
16km

[

1 + cos2(θmn)
]

, (3)

where k = kn−km and the summation is taken over the
23 beat waves between the quad m and every other quad
n 6= m. The gain drops by a factor ∼ 4− 5, which could
help explain the observed saturation of CBET in both
direct- and indirect-drive experiments, where cumulative
amplification from multiple laser beams over large scale
lengths allows large gains even in the presence of very
low levels of density fluctuations [7, 19, 20].
The heating rate eventually drops: the temperature

increases up to the point where the acoustic velocity
reaches the largest beat waves’ phase velocities (soon
after t=200 ps, per Fig. 2). From then on, the ion
acoustic resonance will be moved further away from the
beat waves’ fixed phase velocities, which will reduce
their coupling to the plasma and thus slow down the ion
heating. This also means that the plasma will evolve into
a regime where the electrostatic responses are essentially
linear, as the beat waves’s frequencies are not resonant
with ion acoustic modes anymore.

Since collisions tend to rapidly thermalize the hot ion
tail and restore a Maxwellian shape for the distribu-
tion function, we can derive a reduced model based on
the assumption that the ions are described by a local
Maxwellian with a time-varying temperature and aver-
age velocity. The distribution evolution follows quasi-
linear theory [21]: ∂tf0(v, t) = ∂v · D̄ · ∂vf0(v, t), with
the diffusion operator:

D̄ =
q2i
2m2

i

∑

k

|φ̂k|
2kkIm

1

ωk − k · v
. (4)

By taking the moments of fi0, one can calculate the av-
erage flow and thermal energy, 〈v〉 = n−1

i

∫

d3vvfi0(v, t)
and kBTi =

1
3
mi(〈v

2〉 − 〈v〉2). Both are coupled via the
time-varying ion susceptibility χi, so we get the following
system of coupled equations:

d〈v〉

dt
=

−1

8πmini

∑

k

|φ̂k|
2k2Im(χik)k, (5)

dkBTi
dt

=
1

12πni

∑

k

|φ̂k|
2k2 (ωk − k · 〈v〉) Im(χik), (6)

χik(t) =
−ω2

pimi

2k2kBTi
Z ′

[

ωk − k · 〈v〉

k
√

2kBTi/mi

]

, (7)

where Z ′ is the plasma dispersion function. Equation (5)
is similar to Ref. [15] if φpk is estimated for the case of
laser beams with the same polarization.
The total energy of the ions Utot = 1

2
mi〈v

2〉 is
distributed between thermal and flow energy, Utot =

3
2
kBTi + Uflow where Uflow = 1

2
mi〈v〉

2. Note that for
beat waves produced by lasers with identical frequency,
i.e. ωk = 0, there is no net transfer of energy to the
plasma since dUtot/dt = 0 per Eqs. (5)-(6); there is how-
ever a redistribution of the total energy of the ions from
flow energy to heat. The implication is that even for
configurations where all the laser beams have the same
wavelength, if beams cross in a flowing plasma they will
not only exchange energy [9], but will also reduce the
plasma flow and increase the ion temperature.

This reduced model is compared to our particle code in
Fig. 3. Because ion-ion collisions thermalize the distri-
bution quickly enough, the reduced model reproduces the
code’s result to better than 20% for the temperature and
CBET gains, and to a few % for the momentum. The
disagreement for Ti comes from the fact that the dis-
tribution from the particle code still maintains a slight
tail even at later times when t ≫ τii. The agreement
is better for the momentum which is only the first order
moment of fi0 and is less sensitive to variations in the
detailed shape of the distribution function. This model
could in principle be included in hydrodynamics codes,
allowing an improved and self-consistent description of
hydrodynamics and laser-plasma interactions in regions
where multiple laser beams overlap.

In conclusion, we have shown that strong ion heat-
ing can occur when multiple laser beams overlap in plas-
mas. The numerous beat waves between pairs of cross-
ing laser beams drive electrostatic perturbations which
transfer energy and momentum to the ions, leading to
stochastic heating and plasma drift. For typical NIF con-
ditions, the ion temperature increases at rates of several
keV/ns, making stochastic heating a dominant mecha-
nism for the hydrodynamics evolution of the plasma in
the laser beams overlap region, with heating rates being
faster than ion temperature convection and conduction
and electron-ion temperature equilibration. This results
in the saturation of cross-beam energy transfer; linear
gain exponents for NIF’s inner beams drop by a factor
∼4-5 in a nanosecond due to the increase in the ion acous-
tic velocity, which decouples the beat waves from ion
acoustic modes. A quasi-linear model is shown to repro-
duce the main observables from the particle code. The
heating rate eventually slows down as the electrostatic
responses are driven further away from ion acoustic reso-
nance. The changes in hydrodynamics conditions at the
entrance holes of NIF targets from stochastic ion heating
could also affect other laser-plasma interaction processes
occurring in such regions, such as the re-amplification of
backscatter light by multiple incoming laser beams cross-
ing the backscatter wave on its way out of the target [22].
One could also envision using controlled CBET to locally
heat the plasma and mitigate other laser-plasma interac-
tion processes.

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
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