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Abstract

High resolution kinetic simulations of collisionless plasma driven by shear show development

of turbulence characterized by dynamic coherent sheet-like current density structures spanning

a range of scales down to electron scales. We present evidence that these structures are sites

for heating and dissipation, and that stronger current structures signify higher dissipation rates.

Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current

sheet formation, leading to the expectation that heating and dissipation in astrophysical and space

plasmas may be highly nonuniform and patchy.
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Kinetic plasma dynamics and associated dissipation are often described by waves and

instabilities [1–4]. However, observations of solar wind, coronal, magnetospheric and inter-

stellar fluctuations suggest that a description in terms of turbulence and cascade may be

appropriate[5–7]. Indeed, magnetohydrodynamics (MHD) simulations in various approxi-

mations reveal that a broadband cascade to smaller scales invariably occurs, either through

instability [8] or direct couplings [9] unless fluctuations are eliminated or controlled. When

several decades of scales are available, the dynamics can approach a self-similar “inertial

range” state that is terminated by viscous dissipation at small scales. However for a colli-

sionless plasma, a closed-form dissipation function is not known, and the question becomes

what physical processes terminate the inertial range, and convert cascading energy into heat.

This issue is crucial for problems such as the heating of the solar corona and the origin of

the solar wind [5]. Recently we showed using state of the art kinetic simulations[10], that a

hierarchy of electric current density structures is formed in a kinetic cascade, ranging from

ion to electron scales; here we find that reasonable measures of plasma dissipation have a

strong quantitative association with these structures. This demonstrates that kinetic plasma

dissipation can be intermittent, so that in turbulent space plasmas, heating and dissipation

might also be expected to be highly inhomogeneous and patchy[11–13].

This nature of collisionless dissipation has been hotly debated in recent years, with alter-

native ideas posed in terms of various wave modes, such as kinetic Alfven waves, whistlers,

linear Vlasov instabilities, cyclotron resonance, and Landau damping, to name a few [3–

6, 14, 15]. Many of these approaches tacitly assume that the plasma remains close to a

simple perturbed equilibrium. The turbulent cascade scenario differs in important ways:

First, smaller scale behavior is driven by larger scale dynamics, and response times decreas-

ing with decreasing scale. The system remains far from equilibrium even if it may be in

a statistically steady state. Second, most known types of turbulence produce small scale

structures and very nonuniform dissipation. Local enhancements of dissipation are related

to local nonlinear stresses that give rise to strong gradients, non-Gaussian statistics, and

the phenomenon of intermittency. For fluids, these relationships are embodied in the Kol-

mogorov Refined Similarity Hypothesis (KRSH) [16, 17] which relates fluctuation increments

to hot-spots of dissipation. Though unproven, KRSH forms the basis for much of modern

hydrodynamic turbulence theory. Although well accepted in hydrodynamics, the KRSH has

not been demonstrated, or even precisely formulated, for a collisionless plasma, as far as
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we are aware. However the prospect that local coherent structures may be related to dissi-

pation is an intriguing and testable hypothesis that contrasts the classical plasma view of

homogeneous dissipation.

The solar wind is a good example of the current lack of closure regarding collisionless

plasma dissipation. It is well known that the corona must be heated for the observed wind

to exist, and that the measured solar wind radial temperature profile is inconsistent with

adiabatic expansion [18]. Sufficient energy is present in fluctuations and velocity stream

shears to account for this heating (see [19] and references therein). It is thus tempting to

conclude that the observed MHD cascade connects the large scale energy reservoirs to kinetic

scales where thermalization occurs. Indeed the (approximately) Kolmogorov-like power-law

fluctuation spectrum spanning more than three decades of scale (from ∼ 106km to ∼ 103

km at 1AU) is often viewed as the “smoking gun” of energy transfer across scales. The rate

of energy transfer ǫ may be estimated from a von Karman Howarth analysis as ǫ ∼ U3/L for

fluctuation velocity U and turbulence coherence scale L, or more rigorously from the MHD

generalization of the famous Kolmogorov third-order law [20–22]. Remarkably, these two

results compare well with the heating required to account for the observed radial temperature

gradients [7], which is on average ǫ ≈ 103J/kg-s [22] at 1 AU. The physical mechanisms for

the conversion of cascade into heat remain an elusive and controversial subject. The results

presented here add detail to this picture of cascade and kinetic dissipation, and support a

strong connection between of heating and coherent structures.

The two-dimensional (2D) simulations solve the Vlasov-Maxwell system of equations

using the kinetic particle-in-cell (PIC) code VPIC[23]. The approach is to drive small scale

turbulence using large scale velocity shear. After a startup transient period [10], a strong

cascade becomes apparent, and we examine quantitatively the putative connection between

structures and dissipation. Only this strong turbulence epoch, and not the instability leading

to it, is viewed as relevant to solar wind heating.

The initial density n0 and magnetic field B = B0[ey sin θ + ez cos θ] are uniform and

distribution function for each species is a drifting Maxwellian with uniform temperature

T and drift speed U = U0 tanh(x/LV )ey. Here LV is the shear layer half-thickness and

U0 is the shear velocity. Periodic boundary conditions are imposed in y; the boundaries

at x = 0 and x = Lx are conducting for electromagnetic field and reflecting for particles.

Results shown here are from a 2D simulation with plasma β = 0.1, LV = 4di, mi/me = 100,
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θ = 2.86o, and U0 ≈ 10V ∗
A , and ωpe/ωce = 2 where ωce = eBo/(mec) and ω2

pe = 4πn0e
2/me.

The initial electron and ion temperatures are equal Ti = Te = T , ds = c/ωps is the inertial

length of species s with mass ms, and V ∗
A = B0 sin(θ)/

√
4πn0mi. It was performed in a

rectangular domain in x − y plane of size Lx × Ly = (50 × 100)di and utilized a uniform

computational grid with 8192× 16384 cells corresponding to cell size of approximately 0.77

Debye length (λD). The simulation used 150 particles of each species per cell and ∼ 4×1010

total particles. We normalize time to ωci = eB0/(mic). The characteristic time for attaining

the nonlinear phase, related to growth of the Kelvin-Helmholtz mode [10], is tΩci ∼ 80−160.

Here we focus on the state of the strong turbulence seen at t = 507Ω−1

ci .

A novel feature of this analysis is reduction of noise inherent in the PIC plasma algorithm

through low pass Fourier filtering of the magnetic and electric field at a wavenumber of about

5d−1

e . Fig. 1 shows the how and why the filter is adopted; later, in Fig. 4, we show how it

improves the results. All analyses in this paper employ the low-pass filtered data.

The initial laminar state [10] has become complex by tΩci = 507, as shown in Figure (1): A

hierarchy of current structures is visible, spanning a substantial range of size [10]. The sheet-

like and eddy-like shapes are suggestive of the nonlinear vorticity evolution that is driving

the dynamics. The emergence of a broadband spectrum supports this interpretation. Figure

(1) also shows the wavenumber space perspective: At the kinetic scales kdi > 1 > kde, the

spectrum compares favorably with spectra (k−8/3) often reported in this range for samples

of solar wind data [4, 24–26]. At smaller scales kde > 1 the spectrum steepens further, also

consistent with solar wind observations. A well-defined fluid-scale inertial range is not yet

formed [10]. We now turn to a description of the associated intermittency properties.

Intermittency is typically related to coherent structures, which in in fluids are important

contributors to dissipation [16, 17, 27]. It is also established that MHD produces an inter-

mittent fluid-scale cascade [11–13]. Coherent magnetic structures are observed in the solar

wind, and the stronger of such “discontinuities” are correlated with locally elevated temper-

atures [28]. Lacking so far is a quantitative demonstration that a fully kinetic dynamical

plasma model produces structures [10], that are associated with strong dissipation. We now

provide direct evidence for these connections.

Figure 2 shows a magnified section from Fig. 1, emphasizing the filamentary nature of

the electric current density J = q(nivi − neve) (unit charge, q; proton (electron) number

density ni (ne); fluid velocity vi (ve)). To identify regions that might contain elevated
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FIG. 1: (Top) contour of z component of current density Jz; (bottom) energy spectrum of magnetic

field at t = 507Ω−1

ci , dashed line showing signal eliminated by low pass filter cutoff at kde = 5.

dissipation, we have studied D = J · E, the work done by electromagnetic fields on the

particles, in several frames of reference as well as the work on electrons Je · E. Conversion

of magnetic energy into random kinetic energy must be contained in D, and since particles

in collisionless plasmas interact only through the electromagnetic fields, dissipation must

be contained in these measures. This identification is complicated by contributions from

fluid motions, compressions, particle energization, and reversible motions such as plasma

oscillations. To reduce (but not eliminate) contributions due to fluid motions, we may
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FIG. 2: (Left) Jz in a close-up region of the simulation domain showing hierarchy of coherent

structures; (right) Contour of electron-frame dissipation De for the region shown in left.

evaluate D in a frame moving with either ve, or vi. However, assuming ni = ne = n, in the

proton frame, D → J · (E+ vi ×B) = J · E − qnve · (vi ×B), while in the electron frame,

D → J · (E + ve × B) = J · E + qnvi · (ve × B). Therefore, when ni = ne, the correction

to D due to fluid motion is the same in either frame. To account for the (small) charge

separation ρe = q(ni − ne), we add a correction, for the electron frame, ρeve ·E. This useful
but approximate measure of dissipation (see [29]) is,

De = j · (E+ ve ×B)− ρe(ve · E), (1)

which is evaluated for the local ve. A related interpretation of De is the work done by

the non-ideal part of the electric field in a generalized Ohm’s law, corrected by removing

the work associated with transport of the net charge. De is spatially organized in struc-

tures that resemble the electric current structures (Fig. 2) providing qualitative evidence of

inhomogeneous dissipation. We now turn to quantitative measures.

Fig. 3(a) shows the probability density function (PDF) of four dissipation proxies: De (as

above), the laboratory frame D = J ·E, the “parallel dissipation” D‖ = (J ·B)(E ·B)/|B|2,
and the contribution of electron current Je · E. The exact electromagnetic dissipation is

contained within D and De, but these quantities also contain other effects. D‖ and Je · E
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FIG. 3: (a) PDFs of four dissipation proxies: the electron frame dissipation measure De, the

laboratory frame D, the parallel dissipation D‖, and Je ·E. (b) Conditional average of dissipation

calculated conditioning on the value of current density. (c) Fraction of area (green) of the simulation

domain where the normalized current density J/Jrms is larger than some value n, where Jrms is the

rms value of J . Also shown is the fraction of dissipation (blue) contributed to the total dissipation

from those corresponding areas.

concentrate on the parallel electric field and electron heating[10]. Each proxy has a broad

and slightly asymmetric PDF. D has the broadest distribution, as it includes fluid scale

stresses that exchange magnetic and flow energies. De and D‖ do not contain the full fluid

contributions and are almost identically distributed. Evidently most dissipation is parallel

dissipation. On the other hand a proxy such as Je · E is directly related to the change

of electron energy, and therefore includes electron dissipation, but does not separate out

changes associated with electron flow.

The slight preponderance of positive values in the distributions (see Fig 3) produce good

agreement of global average values 〈De〉 = 5.78 × 10−8c3/de, 〈D‖〉 = 5.81 × 10−8c3/de, and

〈Je ·E〉 = 5.09× 10−8c3/de. We suggest that these are reasonable (but imperfect) estimates
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of net dissipation of fluid scale energy into plasma internal energy. On the other hand J ·E
includes large contributions from convective electric field, has a negative average value, and

is not an appropriate measure of dissipation.

To better understand the ramifications of a highly structured dissipation, we compute

statistics. Fig. 3(b) shows averages of De conditioned on the normalized local current

density, 〈De|J〉/〈De〉. The conditionally averaged De per unit volume is found to be a

strongly increasing function of electric current density. For example, in regions with J >

8Jrms the dissipation per unit volume is more than 500 times the global average. However

these regions are rare, occupying less than 0.01% of the volume.

A related question is: what fraction of global dissipation measure is found in regions in

which the |J| exceeds a given threshold? Let us define a filling fraction F (f |n) = ∑′ f/
∑

f

where
∑′ includes only points where J/Jrms > n. In Fig. 3(c), we plot the filling fraction

for area and for De. These diagnostics show that regions of stronger electric current density

occupy smaller areas, but make disproportionate contributions to total dissipation measure.

For example, about 70% of the dissipation is found in regions with J > 2.0Jrms even though

these regions occupy less than 7 % of the volume. The alternative dissipation measures D‖

and Je ·E (see Fig 3a) also have conditional averages (not shown) qualitatively very similar

to those of De – concentration into small sheet-like regions associated with large values of

electric current density.

The global rate of energy decay may be estimated in three distinct ways. First, by

directly computing the change in time of fluctuation energy [10], we estimate the dissipation

rate as ∆Efluid/∆t for a suitably chosen period of time [10]. We choose the time period

∆t = 507Ω−1

ci − 220Ω−1

ci , and the corresponding fluid scale energy change as ∆E = 6.8 ×
10−3c3/de during which time the turbulence is fully developed. This estimate gives an average

dissipation rate of 1.2× 10−9c3/de, in units of energy per unit mass per unit time. A simple

Taylor-von Karman turbulence decay rate α(δU)3/L may be developed for comparison [19,

30]. Here α = 1/2 is a typical hydrodynamic value of the leading constant [31], δU is a

typical turbulence speed, and L is a similarity length scale describing the energy-containing

structures. If we adopt L ≈ 250de and conservatively estimate the turbulence amplitude

using the magnetic fluctuation energy, leading to the estimate ǫ ≈ (δV 3

A/L) = 1.3×10−9c3/de.

This agrees reasonably well with the computed ∆E/∆t. The total dissipation of fluid

energy may also be estimated as the global (adjusted) work on particles, ǫe = 〈De〉 =

8



0.58×10−9c3/de. It is evident that the highly fluctuating and spatially structured dissipation

can account for a substantial part of the measured dissipation, and is in agreement with

expectations of a cascade theory.
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FIG. 4: Kurtosis of the magnetic field increments δbx = bx(y+r)−bx(y) as a function of separation

length r, computed with unfiltered data, and data low pass filtered at kde = 5. The effects of

counting statistics at very high k influence kurtosis at much larger scales, between de and di. In

all diagnostics, the results are improved by using the filtered data.

Finally, we examine intermittency properties of the magnetic field increments [27, 32].

Fig. 4 shows the scale dependent kurtosis of the increments, both from the filtered data and

the unfiltered data. The kurtosis of the filtered signal grows from the mildly nonGaussian

value of ∼ 4 at scales just larger than di to more nonGaussian values ∼ 10.5 near the electron

scales ∼ de. Due to filtering at r = 0.2de, the values of kurtosis saturate at smaller scales.

This behavior of the increments clearly signifies the phenomenon of statistical intermittency

of the magnetic field. Numerical experiments conclusively indicate that the kurtosis of the

unfiltered signal, which re-Gaussianizes at small scales, is influenced nonlocally in scale by

the statistical noise due to finite particle number. This affects the kurtosis and higher order

statistics, but not the spectrum.

In conclusion we have studied the nonlinear, turbulent behavior of a kinetic plasma

driven by shear using high resolution simulations [10], which show that the strong cascade

is characterized by generation of of highly structured and filamentary current sheets. The

hierarchy extends fully through the range of scale between proton and electron inertial scales.
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Direct computation of the work done by the electromagnetic field on the particles shows that

dissipation occurs nonuniformly, and in fact is strongly associated with the strength of the

magnetic structures. This microscopic assessment of dissipation agrees well with global

energy decay. We conclude that for plasma turbulence originating in planar laminar shear

flows, heating and dissipation are highly nonuniform. Many of these properties appear

to be consistent with observations of solar wind turbulence at kinetic scales [4, 24, 25].

These results suggest that nonuniform dissipation in structures extending down to electron

scales are likely sources of substantial heating in collisionless space plasmas, consistent with

the analysis of magnetosheath observations [33], and analysis of solar wind inertial range

statistics [28]. It is of course be desirable to verify the present 2D analysis in three dimensions

and to explore a range of plasma β of relevance to the corona and solar wind; this is addressed

in [10]. Further study of the intermittency properties at kinetic scales will be reported in a

subsequent paper, while similar analysis of solar wind data would appear to be a desirable

next step.
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