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Quantitative understanding of the fracture toughness of metallic glasses, including the associated
ductile-to-brittle (embrittlement) transitions, is not yet available. Here we use a simple model
of plastic deformation in glasses, coupled to an advanced Eulerian level set formulation for solving
complex free boundary problems, to calculate the fracture toughness of metallic glasses as a function
of the degree of structural relaxation corresponding to different annealing times near the glass
temperature. Our main result indicates the existence of an elasto-plastic crack tip instability for
sufficiently relaxed glasses, resulting in a marked drop in the toughness, which we interpret as
annealing-induced embrittlement transition similar to experimental observations.

The mechanical properties of glassy materials still pose
challenges of great scientific and technological impor-
tance. One such fundamental property is the fracture
toughness – the ability of a material to resist failure in
the presence of a crack [1]. Theoretically predicting the
fracture toughness is a particularly pressing problem in
the context of metallic glasses. Metallic glasses consti-
tute a promising new class of materials, possessing supe-
rior properties, whose usage in structural applications is
severely limited by their relatively low fracture toughness
[2–8, 11].

Recent observations demonstrated a marked drop in
the fracture toughness of metallic glasses as a func-
tion of composition and degree of structural relaxation
(controlled through annealing near the glass tempera-
ture Tg) [6, 9–13]. The drop in the toughness, com-
monly correlated with Poisson’s ratio [11–13], is inter-
preted as a ductile-to-brittle (embrittlement) transition
[9–13], which is not yet well understood.

In this Letter we calculate the fracture toughness of
metallic glasses based on the low-temperature Shear-
Transformation-Zone (STZ) model, using an advanced
Eulerian level set formulation for solving complex free
boundary problems. We demonstrate the existence of
an elasto-plastic crack tip instability as a function of in-
creasing degree of structural relaxation, which results in
a drop in the fracture toughness. We interpret this in-
stability as annealing-induced embrittlement transition
similar to the experimental observation.

The STZ model of amorphous plasticity [14–17] has
been recently shown to emerge within a systematic for-
mulation of non-equilibrium thermodynamics [18, 19] and
to capture a wide range of glassy deformation phenom-
ena [17, 20–24]. Its main advantage in our context is that
it offers a way to quantify the degree of structural relax-
ation and the deformation-driven evolution of structural
disorder. Our goal here is to use the model in a way
that goes beyond previous analyses; rather than fixing
the model parameters to quantitatively describe a given
phenomenon, we treat it as a predictive model where its
parameters are estimated from independent sources and

another phenomenon – crack initiation – is studied.
We focus here on a simple version of the STZ model,

retaining only salient physical ingredients. As we are in-
terested in the fracture toughness well below the glass
temperature Tg, we neglect all spontaneous, non-driven,
relaxation processes and set the plastic rate of deforma-
tion D

pl to zero for stresses below the shear yield stress
sy, the minimal stress needed to achieve steady state
plastic deformation [14]. For s̄≥sy we have

D
pl(s, T, χ)=τ−1

0
Λ(χ) C(s̄, T ) [1− sy/s̄] s/s̄ , (1)

where s=σ− 1

3
trσ 1 is the deviatoric stress tensor (σ is

the Cauchy stress) and
√
2 s̄ ≡ √

sijsij [16, 17]. D
pl is

expressed as a product of physically meaningful terms.
τ−1

0
is a molecular vibration rate. Λ(χ) is the probability

to find a structural fluctuation that is particularly sus-
ceptible to shear-driven rearrangements – an STZ. It is a
function of an effective disorder temperature χ, to be dis-
cussed below. C(s̄, T ) quantifies the rate in which STZ’s
undergo shear transformations and the last terms rep-
resent deformation-induced anisotropy (“back stress”),
making the whole expression tensorially consistent.
χ characterizes the out-of-equilibrium structural de-

grees of freedom of a glass [18], generalizing the concept
of a fictive temperature [25, 26]. It satisfies an effective
heat equation [15, 18]

τ0χ̇ = Γ(s̄, χ) (χ∞ − χ) , (2)

where again spontaneous thermally-activated relaxation
is neglected. χ∞ is the steady state value of χ and Γ(s̄, χ)
is represents mechanically-generated noise that tends to
rejuvenate the glass. This theoretical framework predicts
that Λ(χ) in Eq. (1) is determined by a generalized Boltz-
mann factor, Λ(χ)=exp (−ez/kBχ), where ez is the STZ
formation energy. It is this description of structural dis-
order that makes the STZ model most suitable for study-
ing the phenomenon of interest.
We now need to specify explicit forms for C(s̄, T ) and

Γ(s̄, χ). The latter was proposed to be proportional

to the rate of plastic work Dpl
ijsij [17], i.e. Γ(s̄, χ) =



2

τ0D
pl
ijsij/sy. C(s̄, T ) ≡ 1

2
[R(s̄, T )+R(−s̄, T )] is the av-

erage of forward and backward STZ transition rates

R(±s̄, T ) = exp
(

−∆∓Ω ǫ0 s̄
kBT

)

, which we assume to fol-

low a linearly stress-biased thermal activation process.
Here ∆ is a typical energy activation barrier, Ω is a typ-
ical activation volume and ǫ0 is a typical local strain at
the transition [6, 27]. In the presence of the high stresses
near a tip of a crack, Ω ǫ0s̄ may become larger than ∆, in
which case we assume the exponential thermal activation
form crosses over to a much weaker dependence associ-
ated with a linear, non-activated, dissipative mechanism
[22]. Hence,

C(s̄, T )=
{

e−∆/kBT cosh [Ω ǫ0 s̄/kBT ] for Ω ǫ0s̄ < ∆

Ω ǫ0 s̄/2∆ for Ω ǫ0s̄ ≥ ∆ .
(3)

As ∆≫ kBT , the two expressions connect continuously.
The slope of the linear relation was chosen so as not to
introduce additional parameters. These details do not
affect the qualitative nature of the results below.

We adopt an Eulerian formulation and write the rate
of deformation tensor as a sum of elastic and plastic con-
tributions, Dtot=D

el+Dpl, where Dtot= 1

2
[∇v+(∇v)

T
],

D
el = ∂tǫ+v · ∇ǫ+ǫ · ω−ω · ǫ and ω= 1

2
[∇v−(∇v)

T
].

The strain tensor ǫ is related to σ through Hooke’s law
σ=K trǫ1+2µ

(

ǫ− 1

3
trǫ1

)

, where K and µ are the bulk
and shear moduli, respectively. The velocity field v(r, t),
where r is the spatial coordinate, evolves through mo-
mentum balance ρ0 (∂tv+v ·∇v)=∇·σ, where ρ0 is the
mass density (assumed constant hereafter).

Consider a blunted straight notch (crack) with root ra-
dius ρ (see Fig. 1) under plane-strain conditions. A polar
coordinate system (r, θ) is set a distance ρ/5 behind the
root and θ=0 is the symmetry axis. We adopt a bound-
ary layer formulation in which the following universal
mode I (tensile) crack tip velocity fields are imposed on
a scale much larger than ρ [28–32]

vx(r, θ, t) =
K̇I(t)

4µ

√

r

2π

[

(5− 8ν) cos

(

θ

2

)

−cos

(

3θ

2

)]

,

vy(r, θ, t) =
K̇I(t)

4µ

√

r

2π

[

(7− 8ν) sin

(

θ

2

)

−sin

(

3θ

2

)]

,(4)

where KI(t) is the mode I stress intensity factor and ν is
Poisson’s ratio [1]. The main advantage of this approach
is that the stress intensity factor uniquely couples the
inner scales near the tip to the outer scales and hence can
be controlled independently without solving the global
crack problem [1].

The linear elastic fracture toughness is the critical
value of KI , KIc, at which the crack initiates and global
failure occurs. For multi-component, relatively low cool-
ing rate, bulk metallic glasses this initiation process is
less likely to be associated with a fluid meniscus insta-
bility [33], but rather with near tip void nucleation [34].

The latter has recently received significant experimen-
tal and simulational support [34–38] and is therefore ex-
plored here. We interpret the void nucleation process at
the continuum level (atomistic aspects might be also rel-
evant [39, 40]) as a local cavitation instability [30] initiat-
ing at a structural fluctuation when the hydrostatic ten-
sion 1

3
trσ exceeds a threshold, which for non-hardening

materials is estimated as [41]

σc ≃ 2sy

(

1 + log
[

2E/(3
√
3 sy)

])

/
√
3 , (5)

where E is Young’s modulus and sy/E≪1.
The model parameters for Vitreloy 1, a widely stud-

ied metallic glass used in [12, 13], are estimated from
independent sources. We set µ = 37GPa, ν = 0.35,
ρ0 ≃ 6g/cm3 and sy ≃ 0.85GPa [3, 6]. The basic vibra-
tional timescale is τ0 ≃ 10−13s. The activation volume

of an STZ was estimated to be Ω ≃ 1000Å
3
[42] and

typically ǫ0 ≃ 0.1 [6], hence Ωǫ0 ≃ 100Å
3
. The typical

activation barrier is set to ∆=0.7eV [42]. The STZ for-
mation energy should be somewhat larger than ∆ and
we set ez=1.8eV. Finally, χ∞ is expected to be between
Tg=623K and the melting temperature Tm≃1000K. Pre-
vious works suggest χ∞ ≃ 900K [22]. We set T =400K,
well below Tg.

We set K̇I = 10MPa
√
ms−1 and ρ = 65µm [12, 13].

A key parameter is the initial value of χ, χ(r, t = 0) ≡
χ0. In [12, 13], Vitreloy 1 was annealed for different
times at Tg and the fracture toughness dropped by an
order of magnitude, from KIc≃85MPa

√
m for the as-cast

samples to KIc ≃ 8.5MPa
√
m for the 12 hours annealed

samples. Within the model, we represent the effect of
increasing annealing times by decreasing values of the
initial effective temperature, and focus on the range χ0=
600−660K. All other parameters remained fixed.
We solved the equations for σ, v and χ using the

recently proposed Eulerian finite-difference framework,
where free boundaries are implicitly tracked by the level
set method [43]. A key advantage of this method is its
ability to naturally handle topological changes, such as
those involved in material failure. The combination of
finite-difference and level set methods provides a flexible
platform to study complex physical phenomena such as
crack initiation and propagation.
The widely separated timescales of elastic and plastic

deformations make our equations stiff. In [24], an explicit
update procedure, in which the timestep was chosen to
be small enough to resolve elastic waves, was employed.
It would be prohibitively computationally expensive to
access physically relevant timescales using this proce-
dure. We therefore constructed a new numerical scheme
in which σ and χ are explicitly updated, but v is solved
for implicitly using quasi-static force balance ∇·σ = 0.
Details of the quasi-static scheme and its verification will
be given elsewhere. This scheme allows us to use physi-
cally realistic loading rates and to dynamically switch to
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FIG. 1. (Color online) The normalized hydrostatic pres-
sure field p/sy near a notch at various loading levels KI =
20, 40, 60MPa

√

m (from top to bottom) for χ0=600K (panels
a-c) and χ0=660K (panels d-f). A movie is available at [51].

the explicit scheme when rapid failure initiates. The cal-
culations presented here employed a −20<x/ρ, y/ρ<20
domain, using a 1025×1025 grid. Increasing grid reso-
lution and/or domain size did not significantly affect the
results.

In Fig. 1 we plot a sequence of three snapshots of the
hydrostatic pressure field p(r, t) =− 1

3
trσ for χ0 =600K

(more relaxed) and χ0 = 660K (less relaxed), taken at
the same value of KI . The two sequences seem to ex-
hibit a similar qualitative behavior in which p attains
a minimum ahead of the notch root at a distance that
increases with KI [29–32]. There are, however, marked
quantitative differences: the lower χ0 exhibits a signifi-
cantly smaller minimum (accompanied by a sharp spatial
variation) and the local notch root radius of curvature
decreases, suggesting the onset of a localization process.

To further explore the crack tip dynamics, we plot in
Fig. 2 two snapshots of χ(r, t) for each χ0. Recall that
χ(r, t) quantifies structural disorder – the higher χ, the
higher the disorder and the easier it is to flow. Both
the spatial distribution of χ and the notch geometry are
markedly different in the two cases. In the higher χ0 case,
χ is rather smoothly distributed in the near tip region

and the notch undergoes continuous blunting – its radius
of curvature grows continuously and uniformly with KI .
The lower χ0 case is qualitatively different. At small

loads, there is little plastic deformation and χ remains
nearly constant at its initial value χ0. As KI increases,
plastic deformation localizes in the root vicinity, resulting
in sharply and inhomogeneously distributed χ, featuring
small scale filamentary structures. These dynamics are
strongly coupled to the notch geometry; the radius of
curvature of the notch varies spatially, with a pronounced
reduction near the root. It is this localization process –
an elasto-plastic crack tip instability – that is responsible
for the marked differences in the minima of p in Fig. 1.
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FIG. 2. (Color online) The effective temperature field χ at
KI = 40MPa

√

m (top) and KI = 80MPa
√

m (bottom) for
χ0=600K (panels a-b) and χ0=660K (panels c-d). A movie
is available at [51].

What are the implications of this instability for the
fracture toughness? As discussed above, large |p| may
induce void nucleation, which might lead to catastrophic
failure. Therefore, we focus on the minimum of the pres-
sure pmin(t)≡Min{p(r, t)}, shown in Fig. 3a vs. KI for
the two χ0’s. At small KI both samples respond linear
elastically (and hence identically). As KI increases, local
near tip yielding occurs and the curves progressively de-
viate from the elastic line. Already here quantitative dif-
ferences are observed: the lower χ0 sample exhibits less
plastic deformation and consequently less stress relax-
ation and tip blunting, resulting in more negative pmin.
As KI further increases, a clear signature of the tip in-
stability discussed above is observed, where pmin drops
abruptly for the lower χ0, while the curve for the higher
one exhibits smooth and moderate variation with KI .
A complementary view on the elasto-plastic nature

of the instability is obtained by plotting χmax(t) ≡
Max{χ(r, t)}, which quantifies the magnitude of plas-
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FIG. 3. (Color online) (a) pmin/sy vs. KI for χ0=600K (solid
blue line) and χ0 = 660K (dashed red line). The horizontal
line at pmin/sy = −4.5 is the threshold for void nucleation.
(inset) χmax vs. KI (b) A snapshot of the system (p/sy is
plotted) when a void (small white circle) nucleates. (c) The
subsequent catastrophic failure. A movie is available at [51].

tic deformation, vs. KI in the inset of Fig. 3a. For
χ0 = 660K, a linear elastic regime (χmax = χ0) is fol-
lowed by a smooth and moderate increase of χmax to-
ward χ∞. For χ0 = 600K the linear elastic regime is
followed by an accelerated sharp increase of χmax, which
is mirrored in the drop of pmin in the main panel. To
make things quantitative, we use E/sy ≃ 85 for Vit-
reloy 1 in Eq. (5) to get σc ≃ 5sy [44]. In Fig. 3a,
we chose 4.5sy as the threshold (horizontal line) for void
nucleation, which suggests a large difference in the frac-
ture toughness, KIc ≃ 30MPa

√
m for χ0 = 600K and

KIc ≃ 80MPa
√
m for χ0 = 660K. Varying σc will not

change the qualitative nature of this main result, though
the flatness of the χ0=660K curve suggests quantitative
implications.

Does void nucleation lead to catastrophic failure? i.e.
can one interpret KI at which pmin reaches σc as the
fracture toughness KIc? To address this issue we take
advantage of the model’s dynamical nature and the nu-
merical method’s flexibility to study the post void nu-
cleation dynamics. A void nucleation is shown in Fig.
3b. The subsequent dynamics, a snapshot of which is
shown in panel (c), proceed through a rapid succession
of void nucleations, leading to the coalescence of the ini-

tial void with the root and to rapid catastrophic failure.
This should be contrasted with classical ductile fracture
models [45–47], where void growth and coalescence (but
not nucleation) limit crack growth rate, leading to slow
propagation. The emerging crack pattern in Fig. 3c is
reminiscent of some experimental observations [48] (ran-
dom fluctuations in the void nucleation locations were
introduced to avoid artificial grid effects). In light of this
catastrophic failure, we interpret the large variation in
KI at which the threshold is met in Fig. 3a for the two
different χ0’s as annealing-induced embrittlement transi-
tion similar to the experimental observations.
The crack tip instability, which leads to the marked

drop in the fracture toughness, has both constitutive and
geometric origins. The central physical question here
is how efficiently a material can tame the linear elas-
tic stress singularity, associated with the universal crack
tip fields of Eqs. (4), by stress relaxation processes [49].
Stress relaxation is mediated both by bulk plastic defor-
mation and by the accompanying geometrical changes in
the shape of the notch – the higher the radius of curva-
ture, the lower the stress concentration. As a glass be-
comes progressively more structurally relaxed (less dis-
ordered), these stress relaxation processes become pro-
gressively more limited and below some threshold a tip
instability sets in.
As mentioned above, the ductile-to-brittle (embrittle-

ment) transition is commonly correlated with Poisson’s
ratio ν [6, 11, 13]. We suspect that this correlation might
not be deep, but rather represents the fact that both
the elastic and plastic responses of a glass depend on
its state of disorder, quantified here by χ. Hence, while
there should exist a configurational equation of state ν(χ)
[20, 50], its effect on the toughness is expected to be sec-
ondary compared to the strong exponential dependence
of Dpl on ez/kBχ0 through Λ(χ) (the same is expected
to apply to the possible χ-dependence of other quantities
such as sy, which was neglected in our calculations). In-
deed, for our parameters Λ drops by more than an order
of magnitude when χ0 decreases from 660K to 600K.
The typical fracture toughness values that emerge from

our calculations seem to be in the right ballpark, with-
out fine-tuning the model’s parameters. We would not,
however, take this to imply that our simple model has
quantitative predictive powers. On the other hand, we do
advocate the view that the model can be used to qual-

itatively predict new phenomena, such as the crack tip
instability discussed above.
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