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We introduce a general and systematic theoretical framework for Operational Dynamic Modeling
(ODM) by combining a kinematic description of a model with the evolution of the dynamical
average values. The kinematics includes the algebra of the observables and their defined averages.
The evolution of the average values is drawn in the form of Ehrenfest-like theorems. We show that
ODM is capable of encompassing wide ranging dynamics from classical non-relativistic mechanics to
quantum field theory. The generality of ODM should provide a basis for formulating novel theories.
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Introduction. One primary goal in science is to con-
struct models possessing predictive capability. This en-
deavor is usually achieved by trial and error, with a pro-
posed model either subsequently revised or completely
discarded if its predictions do not agree with experimen-
tal results. Generally such a process is slow, hence au-
tomatization has been attempted [1, 2].

In this Letter, we develop a universal and systematic
theoretical framework for Operational Dynamic Model-

ing (ODM) based on the evolution of dynamical average
values. As an illustration of ODM’s scope, we infer quan-
tum, classical, and unified quantum-classical mechanics.
In order to construct a system’s dynamical model, we first
postulate an associated kinematic description consisting
of two independent components: i) the definition of the
observables’ average, and ii) the algebra of the observ-
ables. ODM applied to observable data, given in the form
of Ehrenfest-like theorems [see, e.g., Eq. (1)], returns the
dynamical model (see Fig. 1 in Ref. [3] for a graphical
summary). The system’s kinematic description can also
be deduced from complementary experiments. For ex-
ample, if the results of a sequential measurement depend
on the measurements’ order, then the algebra of observ-
ables must be non-commutative [see comments after Eqs.
(3) and (13)]. Limited access to experiments capable
of firmly establishing the kinematics does not preclude
hypothesizing plausible kinematic descriptions. Some of
these hypotheses may be rejected within ODM by reveal-
ing their incompatibility with observable dynamical data
[37].

In the spirit of ODM, starting from the Ehrenfest the-
orems [Eq. (2)], we will obtain the Schrödinger equa-
tion if the momentum and coordinate operators obey the
canonical commutation relation, and the classical Liou-
ville equation if the momentum and coordinate opera-
tors commute. To establish a link between quantum and
classical mechanics, we introduce a generalized algebra
of observables, incorporating both quantum and classical
kinematics, that ultimately leads to a unified quantum-

classical mechanics. Most importantly, we will show that
ODM is applicable to a wide range of physical models
from non-relativistic classical mechanics to quantum field
theories, thus making ODM an important tool for formu-
lating future models.
Preparing Dynamical Data. In the current work, we

present the conceptual and theoretical framework of
ODM putting aside issues of handling noise contaminated
experimental data. Assume we have multiple copies of ei-
ther a quantum or classical system (without loss of gener-
ality we consider single-particle one-dimensional systems
throughout). Suppose we can precisely measure different
copies of the particle’s coordinate x and momentum p
at times {tk}

K
k=1. Upon performing ideal measurements

of the coordinate or momentum on the n-th copy, we ex-
perimentally obtain {xn(tk)} and {pn(tk)}, n = 1, . . . , N ,
requiring a total of 2KN observations. Time interpola-
tion of these data points returns the functions xn(t) and
pn(t). We may then calculate the statistical moments

[x(t)]l = 1
N

∑N

n=1[xn(t)]
l and [p(t)]l = 1

N

∑N

n=1[pn(t)]
l

for l = 1, 2, 3, . . . We make the ansatz, resembling a Tay-
lor series with coefficients al, bl, ck,l, dl, el, and fk,l, that

the first derivative of x(t) = [x(t)]1 and p(t) = [p(t)]1

satisfy

d

dt
x(t) =

∑

l

(

al[x(t)]l + bl[p(t)]l
)

+
∑

k,l 6=0

ck,l[x(t)]l[p(t)]k,

d

dt
p(t) =

∑

l

(

dl[x(t)]l + el[p(t)]l
)

+
∑

k,l 6=0

fk,l[x(t)]l[p(t)]k.

For non-dissipative quantum and classical systems, these
relations reduce to

m
d

dt
x(t) = p(t),

d

dt
p(t) = −U ′(x)(t), (1)

where −U ′(x)(t) =
∑

l dl[x(t)]
l.

Kinematic Description. Generalizing Schwinger’s
motto “quantum mechanics: symbolism of atomic mea-
surements” [4], we adapt that any physical model is
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a symbolic representation of the experimental evidence
supporting it. The mathematical symbolism for this pur-
pose needs to be considered. A formalism specialized to
describe a specific class of behavior (e.g., classical me-
chanics expressed in terms of phase space trajectories)
can be effective, but it may be unsuitable for connecting
different classes of phenomena (e.g., unifying quantum
and classical mechanics). In this case a general and versa-
tile formalism is preferred. Building a formalism around
Hilbert space is a suitable candidate for this role. Hilbert
space is well understood, rich in mathematical structure,
and convenient for practical computations.
Consider the postulates: i) The states of a system

are represented by normalized vectors |Ψ〉 of a com-
plex Hilbert space, and the observables are given by
self-adjoint operators acting on this space; ii) The ex-
pectation value of a measurable Â at time t is A(t) =
〈Ψ(t)| Â |Ψ(t)〉; iii) The probability that a measurement

of an observable Â at time t yields A is |〈A |Ψ(t)〉|
2
, where

Â |A〉 = A |A〉; iv) The state space of a composite sys-
tem is the tensor product of the subsystems’ state spaces.
Having accepted these postulates, the rest – state spaces,
observables, and the equations of motion – can be de-
duced directly from observable data. Importantly, these
axioms are just the well-known quantum mechanical pos-
tulates with the adjective “quantum” removed, as |Ψ〉 is
a general state encompassing classical and quantum be-

havior. We will demonstrate below that these postulates
are sufficient to capture all the features of both quantum
and classical mechanics as well as the associated hybrid
mechanics. Equation (1) rewritten in terms of the axioms
becomes

m
d

dt
〈Ψ(t)| x̂ |Ψ(t)〉 = 〈Ψ(t)| p̂ |Ψ(t)〉 ,

d

dt
〈Ψ(t)| p̂ |Ψ(t)〉 = 〈Ψ(t)| − U ′(x̂) |Ψ(t)〉 . (2)

Koopman and von Neumann [5, 6] pioneered the re-
casting of classical mechanics in a form similar to quan-
tum mechanics by introducing classical complex valued
wave functions and representing associated physical ob-
servables by means of commuting self-adjoint operators
(for modern developments and applications see Refs. [7–
21]). Our operational formulation is closely related to the
approach proposed in Ref. [22] and recently successfully
implemented for quantum state tomography [23, 24]. Re-
garding developments of other operational approaches see
Ref. [25] and references therein.
Inference of Classical Dynamics. Let x̂ and p̂ be self-

adjoint operators representing the coordinate and mo-
mentum observables. The commutation relationship

[x̂, p̂] = 0, (3)

encapsulates two basic experimental facts of classical
kinematics: i) the position and momentum can be mea-

sured simultaneously with arbitrary accuracy, ii) ob-
served values do not depend on the order of performing
the measurements. In terms of our axioms, the dynam-
ical observations of the classical particle’s position and
momentum are summarized in Eq. (2).

We now derive the equation of motion for a classical
state. The application of the chain rule to Eq. (2) gives

〈dΨ/dt| x̂ |Ψ〉+ 〈Ψ| x̂ |dΨ/dt〉 = 〈Ψ| p̂/m |Ψ〉 ,

〈dΨ/dt| p̂ |Ψ〉+ 〈Ψ| p̂ |dΨ/dt〉 = 〈Ψ| − U ′(x̂) |Ψ〉 , (4)

into which we substitute a consequence of Stone’s theo-
rem (see Sec. I of Ref. [3])

i |dΨ(t)/dt〉 = L̂ |Ψ(t)〉 , (5)

and obtain

im 〈Ψ(t)| [L̂, x̂] |Ψ(t)〉 = 〈Ψ(t)| p̂ |Ψ(t)〉 ,

i 〈Ψ(t)| [L̂, p̂] |Ψ(t)〉 = −〈Ψ(t)|U ′(x̂) |Ψ(t)〉 . (6)

Since Eq. (6) must be valid for all possible initial states,
the averaging can be dropped, and we have the system
of commutator equations for the motion generator L̂,

im[L̂, x̂] = p̂, i[L̂, p̂] = −U ′(x̂). (7)

Since p̂ and x̂ commute, the solution L̂ cannot be found
by simply assuming L̂ = L(x̂, p̂) (regarding the definition
of functions of operators see Sec. II of Ref. [3]). We add

into consideration two new operators λ̂x and λ̂p such that

[x̂, λ̂x] = [p̂, λ̂p] = i, (8)

and the other commutators among x̂, p̂, λ̂x, and λ̂p van-
ish. The need to introduce auxiliary operators arises
in classical dynamics because all the observables com-
mute; hence, the notion of an individual trajectory can
be introduced (see also Sec. VIII in Ref. [3]). More-
over, the choice of the commutation relationships (8)
is unique. Equation (8) can be considered as an addi-
tional axiom. Now we seek the generator L̂ in the form
L̂ = L(x̂, λ̂x, p̂, λ̂p). Utilizing Theorem 1 from Ref. [3],
we convert the commutator equations (7) into the differ-
ential equations

mL′
λx
(x, λx, p, λp) = p, L′

λp
(x, λx, p, λp) = −U ′(x), (9)

from which, the generator of classical dynamics L̂ is found
to be

L̂ = p̂λ̂x/m− U ′(x̂)λ̂p + f(x̂, p̂), (10)

where f(x, p) is an arbitrary real-valued function. Equa-
tions (5), (8), and (10) represent classical dynamics in an
abstract form.
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Let us find the equation of motion for |〈p x |Ψ(t)〉 |2

by rewriting Eq. (5) in the xp-representation (in which

x̂ = x, λ̂x = −i∂/∂x, p̂ = p, and λ̂p = −i∂/∂p),

[

i
∂

∂t
+ i

p

m

∂

∂x
− iU ′(x)

∂

∂p
− f(x, p)

]

〈p x |Ψ(t)〉 = 0,

(11)

which yields the well known classical Liouville equation
for the probability distribution in phase-space ρ(x, p; t) =
|〈p x |Ψ(t)〉 |2,

∂

∂t
ρ(x, p; t) =

[

−
p

m

∂

∂x
+ U ′(x)

∂

∂p

]

ρ(x, p; t). (12)

Thus, we have deduced the classical Liouville equation
along with the Koopman-von Neumann theory from Eq.
(2) by assuming that the classical momentum and coor-
dinate operators commute.
Inference of Quantum Dynamics. The hallmark of

quantum kinematics is the canonical commutation rela-
tion

[x̂, p̂] = i~, (13)

which implies i) the Heisenberg uncertainty principle and
ii) the order of performing measurements of the coordi-
nate and momentum does matter [4]. The evolution of
expectation values of the quantum coordinate and mo-
mentum is governed by the Ehrenfest theorems (2).
We repeat the algorithm exercised in classical mechan-

ics above. Substituting the definition of the motion gen-
erator Ĥ obtained from Stone’s theorem (see Sec. I in
Ref. [3])

i~ |dΨ(t)/dt〉 = Ĥ |Ψ(t)〉 , (14)

into Eq. (2), we obtain

im[Ĥ, x̂] = ~p̂, i[Ĥ, p̂] = −~U ′(x̂). (15)

Assuming Ĥ = H(x̂, p̂) and utilizing Theorem 1 from
Ref. [3], the commutation relations in Eq. (15) reduce
to mH ′

p(x, p) = p and H ′
x(x, p) = U ′(x). Whence, the

familiar quantum Hamiltonian readily follows

Ĥ = p̂2/(2m) + U(x̂). (16)

Since the Schrödinger equation was derived from the
Ehrenfest theorems (2) assuming the canonical com-
mutation relation (13), the presentation suggests that
the Ehrenfest theorems are more fundamental than the
Schrödinger equation.
Unification of Quantum and Classical Mechanics. (For

a detailed discussion see Sec. III in Ref. [3]; see also Fig.
2 in Ref. [3] for a graphical summary.) The fundamental
difference between non-relativistic classical and quantum
mechanics is that the momentum and coordinate opera-
tors commute in the former case and do not commute in

the latter [26–28]. The operators x̂, p̂, λ̂x, and λ̂p obeying
Eq. (8) form the classical operator algebra. The unified
quantum-classical operator algebra is based on x̂q, p̂q,

ϑ̂x, and ϑ̂p satisfying

[x̂q, p̂q] = i~κ, [x̂q , ϑ̂x] = [p̂q, ϑ̂p] = i, (17)

0 6 κ 6 1, while all the other commutators among x̂q, p̂q,

ϑ̂x, and ϑ̂p vanish. The operators ϑ̂x and ϑ̂p are simply
introduced so that the quantum algebra (i.e., κ = 1) is
consistent with the classical algebra. The limit κ → 0 de-
fines the quantum-to-classical transition with the quan-
tum algebra smoothly transforming into the classical one
as κ → 0. Since ~ enters in the time derivative of
Schödinger equation (14) as well as in the commutator
relationship (13), the limit ~ → 0 encompasses more than
the criterion that the coordinate and momentum opera-
tors must commute in the classical limit. This situation
motivated the introduction of the parameter κ.

As the first step towards unification of both mechanics,
we apply ODM to

m
d

dt
〈Ψ(t)| x̂q |Ψ(t)〉 = 〈Ψ(t)| p̂q |Ψ(t)〉 ,

d

dt
〈Ψ(t)| p̂q |Ψ(t)〉 = 〈Ψ(t)| − U ′(x̂q) |Ψ(t)〉 , (18)

and obtain the Hamiltonian

Ĥ =
1

κ

[

p̂2q
2m

+ U(x̂q)

]

+ F
(

p̂q − ~κϑ̂x, x̂q + ~κϑ̂p

)

,

(19)

such that i~ |dΨ(t)/dt〉 = Ĥ |Ψ(t)〉, where F is an arbi-
trary real-valued smooth function. Note that no Ehren-
fest theorems for the observables Ô = O (x̂q , p̂q) can spec-

ify the function F because [F̂ , Ô] = 0. Hence, the func-
tion F is experimentally undetectable. We shall utilize
this freedom by finding an F which enforces that the
Hamiltonian (19) smoothly transform to become the Li-
ouvillian (10) in the classical limit.

The classical and quantum algebras are isomorphic.
The quantum operators can be constructed as linear com-
binations of the classical operators in many ways, e.g.,

x̂q = x̂− ~κλ̂p/2, p̂q = p̂+ ~κλ̂x/2,

ϑ̂x = λ̂x, ϑ̂p = λ̂p. (20)

In particular, demanding that the quantum operators are
expressed as linear combinations of the classical ones such
that

lim
κ→0

x̂q = x̂, lim
κ→0

p̂q = p̂, lim
κ→0

θ̂x = λ̂x,

lim
κ→0

θ̂p = λ̂p, lim
κ→0

Ĥ = ~L̂, (21)
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identifies the function F as (see Theorems 4 and 5 in Ref.
[3])

F (p, x) = −p2/(2mκ)− U(x)/κ+O(1). (κ → 0) (22)

Keeping the leading term in Eq. (22), we show in Sec. III
of Ref. [3] that only isomorphism (20) is compatible with
such a function F , which leads to the final expression for
the unified quantum-classical Hamiltonian,

Ĥqc =
1

κ

[

p̂2q
2m

+ U(x̂q)

]

−
1

2mκ

(

p̂q − ~κϑ̂x

)2

−
1

κ
U
(

x̂q + ~κϑ̂p

)

≡
~

m
p̂λ̂x +

1

κ
U

(

x̂−
~κ

2
λ̂p

)

−
1

κ
U

(

x̂+
~κ

2
λ̂p

)

.

(23)

that fulfills conditions (21). Theorem 6 in Ref. [3] states
that Ĥqc ≡ ~L̂ for any value of κ if and only if U is a
quadratic polynomial.
We now demonstrate that the Wigner phase-space rep-

resentation is a special case of the unified mechanics.
First rewriting the equation of motion

i~ |dΨκ(t)/dt〉 = Ĥqc |Ψκ(t)〉 (24)

in the xλp-representation (for which x̂ = x, λ̂x =

−i∂/∂x, p̂ = i∂/∂λp, and λ̂p = λp), then introducing
new variables u = x − ~κλp/2 and v = x + ~κλp/2, we
transform Eq. (24) into

[

i~κ
∂

∂t
−

(~κ)2

2m

(

∂2

∂v2
−

∂2

∂u2

)

− U(u) + U(v)

]

ρκ = 0,

where ρκ(u, v; t) ∝ 〈xλp |Ψκ(t)〉. Therefore, ρκ is the
density matrix for a quantum system with the Hamilto-
nian (16) after substituting ~ → ~κ. Note that κ enters
the equation of motion (24) as only a multiplicative con-
stant renormalizing ~. From this perspective, the limit
κ → 0 is indeed equivalent to ~ → 0. The transition from
the xλp- to xp-representation results in

〈p x |Ψκ(t)〉 =

√

~κ

2π

∫

dλpρκ

(

x−
~κλp

2
, x+

~κλp

2
; t

)

eipλp .

(25)

Hence, the wave function 〈p x |Ψκ(t)〉 is proportional to
the celebrated Wigner quasi-probability distribution.
By only demanding a consistent melding of quantum

and classical mechanics within ODM, we achieved the
construction equivalent to the Wigner phase-space for-
mulation of quantum mechanics. The great attraction of
the Wigner formalism is due to its smooth and physically
consistent quantum-to-classical and classical-to-quantum
transitions [27–34]. Our analysis also points to a unique

feature of the phase-space formulation: no quantum me-
chanical representation, but Wigner’s, has a “nice” clas-
sical limit. Moreover, since the Wigner function’s dy-
namical equation is recast in the form of a Schrödinger-
like equation (24), efficient numerical methods for solving
the Schrödinger equation may be applied to propagate
the Wigner function for conceptual appeal and practical
utility.
Future Prospects. ODMwas introduced to derive equa-

tions of motion from the evolution of average values and
a chosen kinematical description. In Secs. IV-IX of Ref.
[3] ODM is applied to the canonical quantization rule, the
Schwinger quantum action principle, the time measuring
problem in quantum mechanics, quantization in curvilin-
ear coordinates, as well as classical and quantum field
theories. Additionally, relativistic classical and quantum
mechanics is also melded within this framework in Ref.
[35].
Variational principles are at the heart of physics.

Within their framework, the problem of model genera-
tion is reduced to finding the correct form of the action
functional, whose Euler-Lagrange equations govern the
model’s dynamics. However, the action is usually neither
directly observable nor unique; hence, its construction is
a subject of debate and can only be justified post factum

by supplying experimentally verifiable equations of mo-
tion. More important, there are phenomena beyond the
scope of variational principles (e.g., dissipation). ODM is
a theoretical framework free of all these conceptual weak-
nesses since it operates with observable data recast in the
form of Ehrenfest-like relations. Hence, the equations of
motion are no longer axioms but are corollaries of the
more fundamental Ehrenfest theorems.
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