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We point out a likely source of systematic error that
was not discussed in the above Letter by T. Roger et al .

[1]. From their experiment the authors deduce an ap-
parently significant disagreement with previous measure-
ments of the shape of the beta-delayed alpha spectrum of
8B. The previous, presently accepted, measurements in
which some of us participated [2, 3], were later indepen-
dently confirmed [4]. The difference in the new results
of [1] is characterized by an ∼18 keV shift of the broad
peak in the summed beta-delayed alpha-particle energy
spectrum. The summed alpha-particle spectrum is im-
portant since it determines (after corrections for recoil
and radiative effects) the primary 8B neutrino spectrum
used to interpret many solar neutrino experiments.

A significant difference between the experiments is in
the type of detector used and in the calibration proce-
dure. While Refs. [2–4] used simple Si-wafer detectors,
the measurements of [1] (and [5] by the same group)
were carried out with a double-sided Si strip detector
(DSSD). Here we focus on comparing the results from [1]
and [2], which both use implanted 8B nuclei to measure
the summed alpha spectrum. Many of our remarks also
apply to the measurement with an external source [5].

In a DSSD detector with 300 µm wide strips, used in
[1], there are inter-strip gaps of about 35 µm where the
electric field in the Si is altered. Particles incident on the
surface of this gap will still produce a pulse, but there
is a charge loss, and the fraction of the charge collected
will be reduced in a way that depends on the details of
the field configuration and how the particles traverse the
affected regions. These regions extend to depths compa-
rable to the gap width [6, 7]. The details of these losses
in charge-collection efficiency are complicated.

Such effects are not addressed in [1]. The DSSD was
calibrated with alpha particles from an external source
with energies between 3-6 MeV. The line shape was pa-
rameterized by a Gaussian with two exponential tails.
However, the alpha particles from the implanted 8B have
an energy of ∼1.5 MeV near the peak of the distribu-
tion with a range of ∼5.5 µm and originate 26µm inside
the detector. They necessarily sample the detector vol-
ume differently from the calibration alphas from external
sources, whose ranges are ∼24 µm. This is a source of
systematic error, not mentioned in the discussion, and
is likely to be significantly larger than the 2-keV uncer-

tainty in the energy scale quoted in the paper. A precise
correction for such effects is difficult, but would be in
a direction to bring the new measurement into better
agreement with the previous work.
The primary calibration in [2] was from the delayed

alpha-decay lines from implanted 20Na, similar to the
implanted 8B. The primary calibration in [1] came from
external sources, and implanted 20Na was used only to
help determine the dead layer on the detector. With the
complicated response of a DSSD to low-energy alphas,
the external calibration presents an additional problem.
Finally, Bahcall et al . [8] showed that older discrep-

ancies in the inferred neutrino spectrum of 8B could be
removed by a small shift in the alpha energy scale, us-
ing the measured shape of the 8B positron distribution
[9] as a reference. Like the neutrinos, the positrons at
high energies are also very sensitive to the low-energy
alpha spectrum. The agreement between the positron
spectrum and the neutrino spectrum of [2, 3] and [4])
is excellent. The difference in the high-energy neutrino
spectrum deduced by Roger et al . is enough to spoil this
agreement.
In view of the unaccounted-for systematic errors and

the inconsistency with the positron data, the statement
in the abstract of [1] that their spectrum “represents a
benchmark for future measurements of the solar neutrino
flux as a function of energy” seems unjustified.
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