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ABSTRACT 

Due to its ability to study specifically labeled structures, fluorescence microscopy is the most 

widely used technique for investigating live cell dynamics and function. Fluorescence 

correlation spectroscopy is an established method for studying molecular transport and 

diffusion coefficients at a fixed spatial scale. We propose a new approach, dispersion-relation 
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fluorescence spectroscopy (DFS), to study the transport dynamics over a broad range of 

spatial and temporal scales. The molecules of interest are labeled with a fluorophore whose 

motion gives rise to spontaneous fluorescence intensity fluctuations that are analyzed to 

quantify the governing mass transport dynamics. These data are characterized by the 

effective dispersion relation. We report on experiments demonstrating that DFS can 

distinguish diffusive from advection motion in a model system, where we obtain 

quantitatively accurate values of both diffusivities and advection velocities. Due to its 

spatially-resolved information, DFS can distinguish between directed and diffusive transport 

in living cells. Our data indicate that the fluorescently labeled actin cytoskeleton exhibits 

active transport motion along a direction parallel to the fibers and diffusive on the 

perpendicular direction.  

 

  



 3

Trafficking inside live cells is the result of both passive diffusion and active or molecular-motor-

driven processes (see, e.g., Ref. [1]). In order to understand intracellular trafficking, one must be 

able to distinguish these types of dynamics with sufficient spatial and temporal resolution so as 

to identify the structure of intracellular transport networks and monitor their changes over the 

course of the cell cycle. Experimentally, this task is challenging due to the multitude of temporal 

and spatial scales involved. Diffusion of fluorescently-tagged molecules has been studied 

successfully by fluorescence correlation spectroscopy (FCS) [2-7] and fluorescence recovery 

after photobleaching (FRAP) [8-11]. In this case, the temporal scales are in the range of μs-ms 

and the spatial scale is fixed by the excitation beam size. Image correlation spectroscopy (ICS) 

[12], spatiotemporal image correlation spectroscopy (STICS) [13], and raster image correlation 

spectroscopy (RICS) [14] have been  successfully developed to extract information about 

fluorophore transport. STICS complements ICS in the sense that it allows measuring the 

direction of the velocity, in addition to its magnitude. RICS extends ICS to faster diffusion 

temporal scales. Note that all these methods use confocal scanning imaging. 

For studying the transport of larger objects in the cell, e.g. organelles and vesicles, 

particle tracking has been used successfully [15-17]. However, the cell contains many extended 

objects or continuous media, such as actin cytoskeleton, which, when viewed on scales large 

compared to its mesh size, cannot be resolved into separately traceable objects. For this reason, 

the spatiotemporal fluctuations of such continuous media cannot be investigated by particle 

tracking. In response to the challenge presented by having to track intracellular dynamics of a 

broad range of spatial and temporal scales, we have recently developed a label-free method that 

can be used to study transport in live cells over a broad range of spatiotemporal scales [18, 19]. 

This technique uses quantitative phase imaging [20], works with intrinsic contrast and, thus, can 
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be used indefinitely, without restrictions due to photobleaching or photoxicity. However, it lacks 

specificity, i.e., it cannot report on the transport of a specific chemical species or structures. 

 In this Letter, we propose a fluorescence imaging approach for studying the dynamics of 

specific structures, both continuous and discrete. This method, referred to as dispersion-relation 

fluorescence spectroscopy (DFS), uses data collected via time-resolved fluorescence full-field 

imaging. Therefore, unlike FCS or FRAP, DFS renders temporal as well as spatial information. 

Because it operates in the frequency domain, DFS is complementary to other measurements 

developed for the same purpose, such as ICS [12], STICS [13], RICS [14]. Analyzing the 

frequency (k-ω) domain, i.e., the dispersion relation of the dynamic transport, is ideal for 

understanding the physical phenomenon because it directly relates to the governing equation of 

motion. This allows studying the dynamic properties of intracellular transport in a scale 

dependent manner. For example, as detailed below, we are able to identify directed and diffusive 

transport at different spatial scales in living cells.  

From the 3D fluorescence data (x, y, t), we calculate Γ(q), the wavenumber-dependent 

decay of temporal correlations in the fluorescence signal. The Γ(q) curve is a fundamental 

characteristic of the transport phenomenon under investigation. We fit this dispersion relation 

using a model based on the diffusion-advection equation, but one in which we assume that the 

decay of correlations results from incoherent sum of the advective (i.e., actively driven) motion 

of many different intracellular elements, such as vesicles or organelles with a distribution of 

advection velocities. This leads to an expression for the normalized density autocorrelation 

function of the form  

 
2

( , ) i vq Dqg q e eτ τ ττ ⋅ −Δ −= 0v q ,       (1a) 

and the decay rate 
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2( )q vq DqΓ = Δ + .        (1b)
 

In Eqs. 1a-b, 
q = q

 is the wavenumber, D is the diffusion constant of cargoes in the intracellular 

medium. In order to generate the observed linear-in-q decay rate of correlations, we assume a 

Lorentzian distribution of advection velocities with a mean v0 and a width Δv .  

 In order to further validate this interpretation of the data, we demonstrate DFS on 

standard samples. We recorded time lapses of fluorescently labeled polystyrene beads both under 

Brownian motion (Figs. 1a-b) and drift (Figs. 1c-d). These 1.2 µm diameter fluorescent beads 

were suspended in water between two coverslips and imaged under fluorescence microscopy at 

acquisition rates of 23 Hz (Fig. 1a) and 0.2 Hz (Fig.1c), up to 256 frames and 128 frames, 

respectively. Figures 1b and 1d show the trajectories of individual beads corresponding to 

Figures 1a and 1c, respectively.  

The mean-squared displacements (MSD) and DFS signals associated with the particles in 

Fig. 1 are shown in Fig. 2. The MSD for the Brownian particles (Fig. 1a-b) were obtained by 

averaging the trajectories of 229 particles. Figure 2a shows a linear fit of this MSD, which yields 

a diffusion coefficient 0.27 0.05D = ± µm2/s. In order to compute the dispersion relation, Γ(qx, 

qy), from the fluorescence movie (Fig. 1a), we first performed the spatial Fourier transform of 

each frame, then calculated the temporal bandwidth, Γ, at each spatial frequency (qx, qy). The 

Γ(qx, qy) map is shown in Fig. 2b.  We then performed the azimuthal average to obtain the radial 

profile 2 2( ), x yq q q qΓ = + . This experimental curve exhibits the expected q2 dependence 

associated with diffusion (Fig. 2c). The resulting diffusion coefficient is 0.21 0.04D = ± µm2/s 

and compares very well the value obtained via particle tracking.  
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For the case of the drift motion shown in Fig. 1c, the squared displacements along x 

direction, 2( )x τ< Δ > , and y direction, 2( )y τ< Δ > , are shown in Fig. 2d. The resulting 

components of the drift velocity are 32.5xv = µm/s, 8.8yv =  µm/s, obtained by fitting a 

quadratic curve. This drift velocity produces a shift in the power spectrum at frequency 

( ) x x y yv q v qω = +q , which is essentially a q-dependent Doppler frequency shift. We projected 

angular frequency ω  versus wave vector components qx (Fig. 2e) and qy (Fig. 2f). The 

corresponding slope yields the drift velocity 33.3xv =  µm/s and 9.1yv =  µm/s, which compare very 

well with the results of particle tracking. 

To prove that DFS works equally well for live cells, we performed experiments in S2 

drosophila cells, whose peroxisomes were labeled with green fluorescent protein.  The images 

were acquired at rate 1 sec/frame up to 2 minutes with epi-fluoresce microscopy, as shown in 

Fig. 3a. MSD of peroxisomes were calculated after their trajectories were recorded with the 

ImageJ software, as shown in Fig. 3b. The linear fit of MSD yields the diffusion coefficients 

3(7 6) 10D −= ± × µm2/s (Fig. 3d). We applied DFS to the acquired images and found that the 

motion of peroxisome were diffusive at time scales of the order of seconds, with 

3(9 1) 10D −= ± × µm2/s (Fig. 3b), which agrees with that obtained from particle tracking. Thus, 

DFS can be easily implemented to study motions of discrete particles in live cells, without the 

need for particle tracking. 

Note that, since DFS relies on analyzing fluctuations in the density of fluorophores rather 

than particle tracking, it applies equally well to continuous mass distributions, such as 

cytoskeletal structures. To explore such a physical problem, we studied mouse embryonic 

fibroblasts (MEFs) with their actin cytoskeleton labeled with GFP, as shown in Fig. 4a. The actin 
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bundles are clearly visible, aligned along the line θ1. We acquired 256 fluorescence images at a 

rate of 1 frame/s. The inset of Fig. 4b shows the dispersion map, ( , )x yq qΓ , which is calculated 

from those acquired images. Clearly, this dispersion map is no longer isotropic, which is due to 

the fact that the transport in directions parallel and perpendicular to the actin bundles differs. We 

identify from the images the directions parallel 1θ ,and perpendicular 2θ  to the actin bundles and 

determine the dispersion curves for motion projected onto these axes. These dispersion relations 

are plotted on a logarithmic scale in Fig. 4b. As might be expected, the results indicate that the 

transport along the actin fibers is directed, as the dispersion curve ( )qΓ  displays q1 dependence. 

By contrast, the transport perpendicular to the actin fibers is dominated by diffusion, as indicated 

by the q2 dependence. These findings are consistent with the well-known phenomenon of “tread 

milling” in which seemingly stable actin filaments are actually continually polymerizing at one 

end and depolymerizing at the other [21-23]. This active process leads to directed 1D transport of 

actin monomers down the filaments.  Transport of actin monomers perpendicular to fiber 

direction, however, does not result from this driven process so that mass transport along 2θ  must 

be controlled by thermal diffusion.  

The reason why q and q2 curves flatten at the far right part is due to the limited 

acquisition rate (the Γ range is limited at high-values). At that small scale (high q part), the fast 

dynamics is not sampled fast enough due to finite frame rate. We kept the acquisition rate low 

purposely to reduce the amount of exposure and the probability of photobleaching. By doing this, 

we can distinguish two modes of transport mechanism in the slow dynamics/large scale (low q 

part). While photobleaching is an important photochemical phenomenon which usually 

complicates the biological observation and is especially problematic in time-lapse microscopy, it 

can also be exploited to study the diffusion of molecules in approaches such as FRAP. In this 
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letter, we simplified the investigation by keeping low exposure, to the point where 

photobleaching effects are negligible. Thus the signals we observe fully represent the movement 

of fluorophores and cellular components that they attach to.  

In summary, in this Letter we proposed dispersion-relation fluorescence spectroscopy 

(DFS) to study full-field fluorescence signal fluctuations caused by mass transport. The specific 

structures of interest are labeled with a fluorophore whose motions give rise to fluorescence 

intensity fluctuations that are further analyzed to quantify the governing molecular mass 

transport dynamics. These data are characterized by the effective dispersion relation in the form 

of a power law, ( ) αqq ~Γ , which describes the relaxation rate of the spatial mode q (1/Γ 

describes the characteristic time of moving particles to travel an 1/q mean distance). This 

dispersion should not be confused with optical dispersion. “Spectroscopy” refers to measuring 

spatiotemporal frequencies associated with mass transport and should not be confused with 

optical spectroscopy.  

We have demonstrated that DFS can distinguish diffusive from directed (or advective) 

motion both in model system where we were able to independently confirm the values of the 

diffusion constant and advection velocity extracted via DFS. Turning to cellular systems, we 

found that DFS can be used to make similar distinctions in intracellular mass transport. By 

studying the transport of monomeric actin in an oriented filament network, we were able to use 

DFS to observe directed transport along the filaments, consistent with tread milling, and 

diffusive transport in the direction perpendicular to them. 

Measuring the dispersion relation itself informs about the spatial scales at which each of 

the two types of transport, diffusion and advection, is dominant. This description comes naturally 

because each spatial frequency is characterized by a specific temporal frequency. In the k-ω 
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representation, the two regimes of transport are directly separated even though their respective 

time constants may differ by orders of magnitude (see, e.g., Fig. 4b). On the other hand, the 

space-time analysis (correlation calculations) of ICS, RICS, and STICS gives an average effect 

over all frequencies. In this case, mathematically the fitting function is a temporal convolution 

between the diffusive and advective terms. Thus, the two contributions overlap in this 

representation. Unless they have comparable correlation times, the diffusive and directed 

transport cannot be readily distinguished (Ref. [13] discusses extensively this issue). 

Furthermore, the frequency domain representation automatically excludes the effects of the static 

structures in the specimen (ω=0 contributions), which was discussed in detail by Brown et al. 

[24]. Finally, DFS works with full field fluorescence imaging (not confocal), which allows 

collecting data from all points simultaneously and simplifies the analysis.  

DFS can be used with particles that cannot be individually resolved, i.e. that are smaller 

than the diffraction spot of the microscope, as long as the particles travel over distances larger 

than the diffraction spot. This is typically the case of interest when studying mass transport in 

live cells. The capability of performing these measurements in a live system provides a new 

window into the physics of out of equilibrium systems. Currently, we are using DFS to study the 

cytoskeleton dynamics under the influence of various protein-motor inhibitors. Besides 

quantifying transport characteristics of molecules, in principle DFS is also capable to estimate 

the number of fluorescent molecules that contribute to each motion (spatial) component. In order 

to estimate quantitatively the concentration of fluorescent molecules we need to perform a series 

of calibrations, which is subject to our future work.  
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Fig. 1 

 

 
Fig. 1a) Fluorescence images of 1.2µm polystyrene fluorescence beads in water under Brownian 
motion. b) Trajectories of individual beads in 1a). c) Fluorescence images of 1.2µm polystyrene 
fluorescence beads drifting  from left to the right. d) Trajectories of individual beads in 1c). 
 

  

a)

b)

c)

d)
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Fig. 2 

 

Fig. 2a Mean squared displacement(MSD) obtained by tracking individual beads in figure 1a). b) 
Decay rate vs. spatial mode, Γ(qx, qy), associated with the beads in a. The dash ring indicates the 

maximum q values allowed by the resolution limit of the microscope. c) Azimuthal average of 
data in b) to yield Γ(q). The fits with the quadratic function yields the value of the diffusion 
coefficient as indicated. d) Mean squared displacement along x direction, , and y direction  of 
beads in Fig. 1c). e) Temporal frequency vs spatial frequency . The slope yields the drifting 
velocity along x direction. f) Temporal frequency vs spatial frequency . The slope yields the 
drifting velocity along y direction. 
  

1 2 3 4 5 6 7
0

2

4

6

8

10

  

 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

 

 

M
SD

 [µ
m

2 ]
MSD(τ )

4Dτ,D=0.27     0.05 µm2/s

τ[s]

q [rad/µm]

Γ
[r

ad
/s

]

Γ(q)

Dq2,D= 0.21       0.04 µm2/s±

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

5000

10000

  

 

 

< Δ
x2 >/

< Δ
y2 >[

µm
2 ]

τ[s]

<x2>(τ )
,2 2

x xv v = 32.5μm/ sτ
<y2>(τ )

,2 2
y yv v = 8.8 μm / sτ

78.42o

53.13o

, 33.3 /m sμ=x x xv q v

, 9.01 /m sμ=y y yv q v

a)

b)

c)

d)

e)

f)

Γ(qx, qy) xω

yω

xq

yq

±



 14

Fig. 3 

 

Fig. 3a) Fluorescence images of culture of S2 drosophila cells whose peroxisomes were labeled 
with GFP. b)  Dispersion curve measured for the cell in a. The quadratic curve fitting indicates 
dominant diffusion motion. And the fitting coefficients yields the diffusion coefficient.  Inset 
shows the Γ(qx, qy) map. c) Trajectories of peroxisomes in a). d) Mean squared displacement 

(MSD) obtained tracking the trajectories of peroxisomes. The linear relationship indicates 
diffusive motion and fitting coefficient gives rise to the corresponding diffusion coefficient. 
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Fig. 4 

 

Fig. 4. Fig. 4a) Fluorescence images of culture of mouse embryonic fibroblast (MEF) whose actin 
were labeled with GFP. b)  Dispersion curve measured for the cell in a. The black and red lines 

indicate directed motion and diffusion along and direction respectively. Inset shows the Γ(qx, qy) 

map associated with a). 
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