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We study the critical properties of the Kitaev-Heisenberg (KH) model on the honeycomb lattice at
finite temperatures that might describe the physics of the quasi two-dimensional (2D) compounds,
Na2IrO3 and Li2IrO3. The model undergoes two phase transitions as a function of temperature. At
low temperature, thermal fluctuations induce magnetic long-range order by the order-by-disorder
mechanism. This magnetically ordered state with a spontaneously broken Z6 symmetry persists
up to a certain critical temperature. We find that there is an intermediate phase between the
low-temperature, ordered phase and the high-temperature, disordered phase. Finite-sized scaling
analysis suggests that the intermediate phase is a critical Kosterlitz-Thouless (KT) phase with
continuously variable exponents. We argue that the intermediate phase has been observed above
the low-temperature, magnetically ordered phase in Na2IrO3, and also likely exists in Li2IrO3.

Introduction. The Ir-based transition metal oxides, in
which the orbital degeneracy is accompanied by a strong
relativistic spin-orbit coupling (SOC), have recently at-
tracted a lot of theoretical and experimental attention
[1–8]. This is because the strong SOC creates a different,
and frequently novel, set of magnetic and orbital states
due to the unusual anisotropic exchange interactions be-
tween localized moments which are in turn determined
by the combination of spin and lattice symmetries. The
spin-orbital models that describe the low-energy physics
of iridium systems often include anisotropic terms that do
not reduce to the conventional easy-plane and easy-axis
anisotropies because they involve the products of differ-
ent components of multiple spin operators. These terms
are responsible for exotic Mott-insulating states [3], topo-
logical insulators [10, 11], spin-orbital liquid states [1, 2],
and non-trivial long-range magnetic orders [3, 4, 6].

A prominent example of such an anisotropic spin-
orbital model is the KH model on the honeycomb lattice
[12, 13] which likely describes the low-energy physics of
the quasi 2D compounds, Na2IrO3 and Li2IrO3. In these
compounds, Ir4+ ions are in a low spin 5d5 configura-
tion and form weakly coupled hexagonal layers [4, 6, 8].
Due to strong SOC, the atomic ground state is a dou-
blet where the spin and orbital angular momenta of Ir4+

ions are coupled into Jeff = 1/2. It was suggested [12, 13]
that the interactions between these effective moments can
be described by a spin Hamiltonian containing two com-
peting nearest neighbor (NN) interactions: an isotropic
antiferromagnetic (AF) Heisenberg exchange interaction
and a highly anisotropic ferromagnetic (FM) Kitaev ex-
change interaction [14]. This competition can be de-
scribed with the parameter, 0 ≤ α ≤ 1, which sets the
relative strength of these two interactions. At α = 0, the
coupling corresponds to the AF Heisenberg interaction,
and at α = 1, it corresponds to the Kitaev interaction.

This model immediately attracted a lot of attention;
several theoretical studies were published in the last few
years [13, 15–17] on both the ground state and its prop-
erties at finite temperature. The ground state phase di-

agram of the KH model exhibits three distinct phases:
the AF Néel phase for small α ∈ (0., 0.4), the stripy AF
phase for intermediate α ∈ (0.4, 0.86), and the disordered
spin-liquid phase at large α ∈ (0.86, 1.). While the phase
transition between the Néel and the stripy phase appears
to be discontinuous, numerical studies including density
matrix renormalization group [15] and exact diagonaliza-
tion results [13] suggest that the transition between the
spin liquid and the stripy state is continuous or weakly
first-order. Additionally, quantum fluctuations select all
of the magnetically ordered phases to have the order pa-
rameter point along one of the cubic axes.

In this Letter, we discuss finite temperature properties
of the KH model on the honeycomb lattice. A first step
in this direction was made in Ref. [16], where the critical
ordering scale for the magnetically ordered states was an-
alyzed using a pseudofermion functional renormalization
group approach. Here we present numerical results ob-
tained using Monte Carlo (MC) simulations. We study
the classical KH model because the corresponding quan-
tum model has a sign problem precluding quantum MC
analysis and also because the existence of long-range or-
der at low temperatures in Na2IrO3 and in Li2IrO3 in-
dicates that quantum fluctuations are not dominating in
these materials [4–8].

We show that the thermal fluctuations of classical spins
give rise to two distinct temperature dependent effects.
At low temperature they predominantly act as the source
of the order-by-disorder phenomenon and select collinear
magnetic order where the spins are oriented along one
of the cubic directions. There are six possible ordered
states, one of which is spontaneously chosen by the sys-
tem. At high temperatures, when T is larger than any
energy scale in the system, the fluctuations destroy any
order putting the KH model into a three dimensional
paramagnetic state. The main goal of our study is to see
how these two phases are connected.

We argue that the classical KH model effectively be-
haves like a six-state clock model [18–21] and that it un-
dergoes two continuous phase transitions as a function
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FIG. 1: Four possible magnetic configurations: (a) the FM
ordering; (b) the two-sublattice, AF Néel order; (c) the stripy
order; (d) the zigzag order. Open and filled circles correspond
to up and down directions of spins.

of temperature separating three phases: a low-T ordered
phase, an intermediate critical phase, and a high-T dis-
ordered phase. The critical phase has an emergent, con-
tinuous U(1) symmetry which is fully analogous to the
low-T phase of the XY model, a well-known KT phase
of critical points with floating exponents and algebraic
correlations. Here we present numerical data only for
α = 0.25 and α = 0.75 since these values likely character-
ize the ratio between the AF Heisenberg interaction and
the Kitaev interaction in Na2IrO3 and Li2IrO3. However,
we note that recent inelastic neutron scattering measure-
ments on Na2IrO3 have shown that the KH model alone
is insufficient to describe the magnetic properties of this
compound [7]. It has been demonstrated that it is es-
sential to include substantial further-neighbor exchanges
to describe both the zigzag ground state and the exci-
tation spectrum in Na2IrO3. The full finite-temperature
phase diagram for the KH model with second and third
neighbor exchange interactions will be published else-
where [23].
The Model. The classical version of the KH model

which describes the interactions among the J = 1/2 de-
grees of freedom of Ir4+ ions reads as

H = −JK
∑

〈ij〉γ

Sγ
i S

γ
j + JH

∑

〈ij〉

SiSj . (1)

where the spin quantization axes are taken along the cu-
bic axes of the IrO6 octahedra. γ = x, y, z denotes the
three bonds of the honeycomb lattice. The exchange con-
stants, JK = 2α and JH = 1 − α, correspond to the Ki-
taev and Heisenberg interactions which can be derived
from a multiorbital Hubbard Hamiltonian [13].
Order by Disorder. The symmetry of the KH model

combines the cubic symmetry of both the spin and the
lattice space. It consists of simultaneous permutations
between the x, y, z spin components and a C3-rotation of
the lattice which defines a discrete symmetry. The classi-
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FIG. 2: Histograms of the order parameter mN(S), obtained
for the system with 2*84*84 spins in the ordered phase, (a)
and (e), in the intermediate phase, (b)-(c) and (f)-(g), and
in the disordered phase, (d) and (h). Histograms (a)-(d) are
computed for α = 0.25, and (e)-(h) are for α = 0.75. The
histograms are presented on the complex plane (Re |mN(S)|,
Im |mN(S)|).

cal ground state has a higher symmetry than that of the
Hamiltonian – the ground state energy does not change
under a simultaneous rotation of all spins. Since this
applies only to the ground state,the KH model has only
an accidental continuous rotation symmetry. Its actual
symmetry is discrete; at zero temperature, the ”pseudo”
SU(2) symmetry is broken by quantum fluctuations that
restore the underlying cubic symmetry of the model [13].
The magnetically ordered phase is gapped with a spin gap
that corresponds to the finite energy cost of deviating the
order parameter from one of the cubic axes. We show in
the following that thermal fluctuations of classical spins
at finite T also select a collinear spin configuration whose
order parameter points along one of the cubic axes.

Parameters of the Simulations. We have carried out
classical MC simulations of the model (1) using the
standard Metropolis algorithm. In our MC simulations,
we treat the spins as three-dimensional (3D) vectors,
Si = (Sx

i , S
y
i , S

z
i ), of unit magnitude with (Sx

i )
2+(Sy

i )
2+

(Sz
i )

2 = 1 at every site. At each temperature, more than
107 MC sweeps were performed. Of these, 5 ∗ 105 were
used to equilibrate the system, and afterwards only 1 out
of every 5 sweeps was used to calculate the averages of
physical quantities. We present all energies in the units
of JH and assume kB = 1. The calculations were carried
out on several finite systems with size 2 ∗ L ∗ L that are
spanned by the primitive vectors of a triangular lattice
a1 = (1/2,

√
3/2) and a2 = (1, 0) with a 2-point basis

using periodic boundary conditions.

Results. To study the possible phases of the model (1),
we introduce four magnetic configurations (Fig. 1): a FM
order, a simple two-sublattice AF Néel order, a stripy or-
der, and a zigzag spin order. The classical energies of
these states can be easily computed: EM

cl = 3 − 5α,
EZ

cl = −3α + 1, ES
cl = −α − 1, and EN

cl = 5α − 3 for
the FM, the zigzag, the stripy and the Néel phases, re-
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FIG. 3: The log-log plots of the order parameter mN(S) as
a function of system size L at various temperatures. The
solid curves indicate the linear behavior that corresponds to a
power-law dependence, mN(S) ∼ L

−η/2, cooresponding to the
intermediate critical phase. The dashed curves show deviation
away from the linear behavior outside the critical phase.

spectively. For 0 ≤ α < 1, the classical ground state
is either the Néel AF with the vector order parameter
N = 1

N

∑
i(SiA − SiB) or the stripy phase described

by S = 1
N

∑
i=n(SiA − SiB + SiC − SiD). Here, A,B

and A,B,C,D denote either two or four sublattices that
respectively characterize the Néel AF and stripy order.
The classical phase transition between them occurs at
α = 1/3. At α = 1, the FM, stripy, and zigzag phases
all have the same classical energy. However, the classi-
cal degeneracy of this point, which corresponds to the
pure Kitaev model, is much higher. This limit has been
thoroughly studied by Baskaran et al. [22].

To make an analogy to the six-state clock model, we
map the order parameter describing the magnetically or-
dered phase of the KH model onto a 2D complex order
parameter,mN(S) =

∑6
i=1 |mi,N(S)|eıθi , such that the six

possible ordered states are characterized by θi = πni/3,
ni = 0, ..5 [20]. The mapping is exact only well within
the ordered state since there is no guarantee that the
thermal fluctuations of the order parameter will actually
have a 2D character given that the spin degrees of free-
dom are three-dimensional. Depending on the strength
of the spin stiffness in different directions, the long-range
low-T magnetic order can be destroyed in one of several
ways. If the stiffness of thermal fluctuations along the
circle is softer than the stiffness of fluctuations in the di-
rection transverse to the circle, the long-range order may
be destroyed by a discontinuous first-order transition, by
two continuous phase transitions with an intermediate
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FIG. 4: A snapshot of the coarse-grained order parameter
〈mN〉 at T = 0.168. The vortex-like topological excitations
are evident.

partially ordered phase, or by two KT phase transitions
with an intermediate critical phase [18–21]. In the last
scenario, the critical phase is destroyed by topological ex-
citations in the form of discrete vortices whose existence
is directly related to the emergence of a continuous sym-
metry; the high-T transition will first bring the system
into a disordered phase where fluctuations are primarily
2D, and the crossover to the 3D paramagnet occurs at
even higher temperatures.

In Fig. 2 we present the results of the histogram
method for the complex order parameter. At low temper-
atures, Figs. 2 (a) and (e), a sixfold degeneracy present
in the ordered phase is seen. For both α = 0.25 and
α = 0.75, the six states which have the highest weight
in the histogram are where the order parameter mN(S)

points along one of the cubic axes. In Figs. 2 (b) and (f),
when the temperature increases beyond a certain critical
temperature, a continuous U(1) symmetry emerges sig-
naling both the disappearance of the sixfold anisotropy
and the appearance of the critical phase. The forma-
tion of vortices can be seen in Fig. 4 where we present a
snapshot of the coarse-grained order parameter 〈mN 〉 at
T = 0.168. Upon a further increase in temperature, the
amplitude of the order parameter decreases (Figs. 2 (c)
and (g)) until it shrinks to zero indicating the transition
to the paramagnetic phase (Figs. 2 (d) and (h)).

To better understand the properties of the intermedi-
ate phase and to confirm its critical nature, we performed
the finite-size scaling analysis appropriate for KT tran-
sitions [24]. The full finite-size scaling analysis is rather
involved and will be reported elsewhere [23]. Here we
present only the scaling behavior of the order parame-
ter. At the KT transition, the order parameter exhibits
the power law dependence on system size, m ∼ L−η/2.
As each point of the intermediate critical phase can be
understood as a critical point, the power law behavior
of the order parameter should hold throughout the en-
tire phase. We found that the boundaries of the critical
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FIG. 5: The Binder cumulant as a function of temperature
for (a) α = 0.25 and (b) α = 0.75. From the crossing points of
different Binder’s curves, we estimate Tc1 = 0.152 and Tc1 =
0.124 for α = 0.25 and α = 0.75, respectively.

phase are characterized by critical exponents close to 1/9
and 1/4 for the lower and upper boundaries at Tc1 and
Tc2 , which is in agreement with critical exponents for
the six-state clock model obtained by the renormaliza-
tion group analysis [18]. Fig. 3 shows the log-log plots of
the order parameter mN(S) as a function of system size
for different temperatures. For α = 0.25, the data points
in Fig. 3 a) show a linear behavior in the temperature
interval between Tc1 ≃ 0.152 and Tc2 ≃ 0.162, in which
there are several critical lines characterized by η between
1/9 and 1/4. For α = 0.75, we have detected the critical
phase in the temperature interval between Tc1 ≃ 0.125
and Tc2 ≃ 0.127.
The lower transition temperature Tc1 can be indepen-

dently determined using fourth-order Binder cumulant
(Figs. 5 (a) and (b)). The Binder cumulant has a scaling
dimension of zero; thus the crossing point of the cumu-
lants for different lattice sizes provides a reliable estimate
for the value of the critical temperature Tc1 at which the
long range order is destroyed. The crossing points for
α = 0.25 and α = 0.75 are Tc1 = 0.152 and Tc1 = 0.124,
respectively. They are in good agreement with estimates
obtained from the log-log plots in Fig. 3.
In Figs. 6 (a) and (b) we present the temperature de-

pendence of the specific heat, C = (〈E2〉 − 〈E〉2)/NT 2.
While the low-T transition, seen as small peak at tem-
peratures Tc1 = 0.152 and 0.1247 for α = 0.25 and 0.75,
respectively, is in a good agreement with our previous
estimates, the features corresponding to the high-T tran-
sition Tc2 are barely distinguished by eye. This is not
surprising as the high-T transition is a usual KT tran-
sition at which the specific heat does not diverge at the
critical point [26]. It is also likely that the high-T KT
transition might be shadowed by the crossover to the 3D
paramagnet, which is seen in Fig. 6 as a very broad hump
at higher-T.
Our findings for the specific heat show a lot of simi-

larities between the experimental data obtained on the
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FIG. 6: Specific heat C as a function of temperature for (a)
α = 0.25 and (b) α = 0.75.

Na2IrO3 and Li2IrO3 compounds by Refs. [4, 5] and [8].
In Na2IrO3, both the lambda-like anomaly at the Néel or-
dering temperature, TN = 15 K, and a broad tail which
extends into higher temperatures are seen in the specific
heat measurements [4]. The latter suggests the presence
of short-range order above the bulk 3D ordering that can
be understood by our proposed scenario of the critical
phase.

Let us estimate the temperatures of the KT transitions
and the width of the critical phase in Na2IrO3 based on
our results obtained for the KH model with α = 0.25. On
the mean field level, the exchange on the NN bonds may
be estimated from the classical energy, J1 ≃ (3− 5α)/3,
in the Néel phase. From the recent neutron scattering
experiment [7], the NN exchange in Na2IrO3 was esti-
mated to be J1 = 4.17 meV. In the bulk of our paper,
all energies were measured in the units of JH , and thus
we estimate J1 to be equal to 12.7 meV. This gives the
prediction for the critical temperature to be Tc1 = 16.8
K, which is very close to the experimental value TN = 15
K [4, 5]. Our estimate for the upper boundary of the
critical phase is Tc2 = 17.7 K which makes the predicted
critical phase very narrow. We note here that the critical
phase survives in the extended KH model with included
further-neighbor exchange couplings [5, 7, 25] which are
essential for comparison with experiment. However, in
order to determine the upper boundary of the critical
phase additional extensive numerical simulations must
be performed.



5

Acknowledgements. The authors are particularly
thankful to C. Batista, G.-W. Chern, G. Jackeli, and Y.
Kato for stimulating discussions and many helpful sug-
gestions. We are grateful to H. Takagi and T. Takayama
for sharing with us unpublished data on Na2IrO3 and
Li2IrO3. N.P. acknowledges the support from NSF grant
DMR-1005932. N.P. also thanks the hospitality of the
visitors program at MPIPKS, where the part of the work
has been done.

[1] S. Nakatsuji et al., Phys. Rev. Lett. 96, 087204 (2006).
[2] Y. Okamoto et al., Phys. Rev. Lett. 99, 137207 (2007).
[3] B. J. Kim et al., Science 323, 1329 (2009).
[4] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412

(2010).
[5] Yogesh Singh et al., Phys. Rev. Lett. 108, 127203 (2012)
[6] X. Liu et al., Phys. Rev. B 83, 220403(R) (2011).
[7] S. K. Choi et al., Phys. Rev. Lett. 108, 127204 (2012).
[8] H. Takagi, unpublished.
[9] G.-W. Chern and N. B. Perkins, Phys. Rev. B 80,

180409(R) (2009).
[10] A. Shitade et al., Phys. Rev. Lett. 102, 256403 (2009).

[11] D.Pesin, L.Balents, Nature Physics 6, 376 (2010).
[12] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102,

017205 (2009).
[13] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev.

Lett. 105, 027204 (2010).
[14] A. Kitaev, Ann. Phys. 321, 2 (2006).
[15] H.-C. Jiang, Z.-C. Gu, X.-L. Qi, and Simon Trebst Phys.

Rev. B 83, 245104 (2011).
[16] J. Reuther, R. Thomale, and S. Trebst, Phys. Rev. B 84,

100406 (2011).
[17] F. Trousselet, G. Khaliullin, P. Horsch, Phys. Rev. B 84,

054409 (2011).
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