
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Superfluid Density in the s_{±}-Wave State of Clean Iron-
Based Superconductors

Huaixiang Huang, Yi Gao, Jian-Xin Zhu, and C. S. Ting
Phys. Rev. Lett. 109, 187007 — Published  2 November 2012

DOI: 10.1103/PhysRevLett.109.187007

http://dx.doi.org/10.1103/PhysRevLett.109.187007


LS13000

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Superfluid density in the s±-wave state of clean iron-based superconductors

Huaixiang Huang,1,2 Yi Gao,3 Jian-Xin Zhu,4 and C. S. Ting2

1Department of Physics, Shanghai University, Shanghai 200444, China
2Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204, USA

3Department of Physics and Institute of Theoretical Physics,
Nanjing Normal University, Nanjing, Jiangsu 210046, China

4Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Based on a phenomenological model and the Kubo formula, we investigate the superfluid densityρs(T ) and
then the penetration depthλ(T ) of the iron-based superconductors in the coexistence region of the spin-density-
wave and superconductivity, and also in the over-doped region. Our calculations show a dramatic increase
of λ(0) with the decrease of the doping concentrationx below x = 0.1. This result is consistent with the
experimental observations. At low temperatures,ρs(T ) shows an exponential-law behavior, while at higher
temperatures, the linear-in-T behavior is dominant before it trends to vanish. It is in qualitative agreement with
the direct measurement of superfluid density in films of Fe-pnictide superconductor atx = 0.08. The evolution of
∆λ(T ) can be roughly fitted by a power-law function with the exponent depending on the doping concentration.
We show that the Uemura relation holds for the iron-based superconductors only at very low doping levels.

PACS numbers: 74.70.Xa, 74.25.N-, 75.20.-g

Beside the zero resistance, Meissner effect is another hall-
mark of superconductivity. The directly measured penetra-
tion depth(λ) in a weak magnetic field provides information
of the gap structure, and is a characteristic length scale ofa
bulk superconductor. In generalρs ∝ 1/λ2. The number of
electrons in the superconducting phase,ρs, characterizes the
phase rigidity of a superconductor. In conventional Bardeen-
Cooper-Schrieffer (BCS) superconductors, penetration depth
exhibits an exponential behavior at low temperatures, and the
power-law behavior in∆λ(T ) ≡ λ(T ) − λ(0) has been con-
sidered as an evidence for unconventional pairing symme-
try in the high-temperature superconductors [1]. Compare to
cuprates, the remarkable features of iron pnictides are thena-
ture of magnetism and the multi-band character. They have
triggered massive studies since their discovery [2, 3]. In this
paper we focus on its response to a weak external magnetic
field.

There are several ways to measure magnetic penetration
depth [4–6]. In the 1111 systems, at low temperatures, some
experiments [7] found a power-low behaviorλ(T ), while oth-
ers [8, 9] have found an exponential temperature dependence
of λ(T ). The situation in the 122 system is also unclear:
The superfluid densityρs(T ) exhibits an exponential behav-
ior in the cleanest Ba1−xKxFe2As2 [10], while measurements
on Ba(Fe1−xCox)2As2 have shown a power-law behavior of
λ(T ) [11–16] with the exponent varying from 1.6 to 2.8 and
a two-gap scenario is suggested for Ba(Fe1−xCox)2As2 and
Ba1−xRbxFe2As2 [17, 18]. And there are also some theoret-
ical works [19–22].

In this paper, we carry out systematic calculations ofρs(T )
based on a two-orbital phenomenological model [23]. Within
this model, each unit cell accommodates two inequivalent Fe
ions and results based on this model on various properties of
Fe-pnictide supeconductors [23–31] are in reasonable agree-
ment with experimental measurements. When we normalize
the energy parameters of the Fe-Fe nearest and next nearest

neighbors, the hopping integrals defined below are chosen as
t1−4 = 1, 0.4,−2.0, 0.04 [23], respectively. In the momentum
k-space, the single-particle Hamiltonian matrix can be written
as [26, 27]

Ht,k =





























a1 − µ a3 a4 0
a3 a1 − µ 0 a4

a4 0 a2 − µ a3

0 a4 a3 a2 − µ





























, (1)

with a1 = −2t2 cos (kx + ky) − 2t3 cos (kx − ky), a2 =

−2t3 cos (kx − ky) − 2t2 cos (kx + ky), a3 = −2t4(cos (kx + ky) +
cos (kx − ky)), a4 = −2t1(coskx + cosky), µ is the chemical
potential. Here we have chosen thex-axis along the link
connecting nearest neighbor (NN) Fe ions, and the distance
between NN Fe is taken as the unit of length. The pair-
ing term H∆,k =

∑

ανk(∆α,kc†
ανk↑c

†

αν−k↓ + h.c.) has only next-
nearest-neighbor (NNN) intra-orbital pairing whereα denotes
Fe A or Fe B in the unit cell andν denotes orbitals. It will
lead to thes±-wave pairing symmetry [10, 11, 32]. The
self-consistent conditions are:∆αk = 2

∑

τ coskτ∆αi,i+τ and
∆
α
i,i+τ =

V
2 〈c

α
iν↑c

α
i+τ,ν↓−cαiν↓c

α
i+τ,ν↑〉 =

V
Ns

∑

k coskτ〈cαν,k↑cαν,−k↓〉,
with τ = x ± y and the pairing strengthV = 1.2. The inter-
action term includes the Hund’s couplingJH = 1.3 and the
on-site Coulomb interactionU which we chooseU = 3.4 and
U = 4.0 as two different kinds of homogenous systems. After
taking the mean-field treatment [24, 25],Hint can be expressed
as

Hint = U
∑

iµσ,σ̄

〈niµσ̄〉niµσ + (U − 3JH)
∑

iµ,νσ

〈niµσ〉niνσ

+(U − 2JH)
∑

iµ,νσ,σ̄

〈niµσ̄〉niνσ. (2)

In the presence of spin-density-wave (SDW) order,Hint in
the k-space can be decoupled into diagonal term and mag-
netic term. Defineψ†kσ = (c†A0,k↑, c

†

A1,k↑, c
†

B0,k↑, c
†

B1,k↑), ϕ
†

k =



2

(ψ†k↑, ψ
†

k+Q↑, ψ−k↓, ψ−k+Q↓), the Hamiltonian without external

field in k-space can be written asϕ†kH0ϕk [26, 27], with

H0 =

































H′t,k R IH∆,k 0
R H′t,k+Q 0 IH∆,k+Q

IH∆,k 0 −H′t,k R
0 IH∆,k+Q R −H′t,k+Q

































, (3)

whereI is a 4× 4 unit matrix,R = −M
2 (U + JH)HM and the

correspondingH′t,k = Ht,k +
n
4(3U − 5JH)I with n = 2+ x. R

relates to the magnetic order [26, 27] with

HM =

(

I 0
0 I exp iQ · RAB

)

, (4)

in Eq.(4)I is a 2× 2 unit matrix. Due to SDW order, the
wave vectork is restricted in the magnetic Brillouin zone
(BZ). The self-consistent condition isM = 1

2

∑

ν(nAν↑−nAν↓) =
1

2Ns

∑

ν,k σc†AνσkcAνσk+Q, RAB is the distance of Fe B to the ori-
gin sited by Fe A.Ns is the number of unit cells. We take
Ns = 512 to obtain self-consistent parameters andNs = 768
in the calculation ofρs. After diagonalizing

∑

k ϕ
†

k H0ϕk =
∑

km Ek,mγ
†k
m γ

k
m by a 16× 16 canonical transformation matrix

T, we can obtain all properties of the system without the ex-
ternal field.

Our investigation of the superfluid densityρs follows the
linear response approach described by Refs. [1, 33–35]. In
the presence of a slowly varying vector potentialAx(r, t) =
A(q, ω)eiq·r i−iωt along thex direction, the hopping term is mod-
ified by a phase factor,c†iσc jσ → c†iσc jσ exp i e

~c

∫ ri

r j
A(r , t) · dr .

Throughout the paper we set~ = c = 1. By expanding the
factors to the order ofA2, we obtained the total Hamiltonian
Htot = H0 + H′ with

H′ = −
∑

i

Ax(ri, t)[eJP
x (ri) +

1
2

e2Ax(ri, t)Kx(ri)]. (5)

JP
x (ri) is the particle current density along thex-axis,Kx(ri) is

the kinetic energy density along thex-axis. Their expressions
are

Kx(ri) = −
∑

νν′σδ

ti,i+δx2
i,i+δ(c

†

iνσci+δ,ν′σ + h.c.), (6)

JP
x (ri) = −i

∑

νν′σδ

ti,i+δxi,i+δ(c
†

iνσci+δ,ν′σ − h.c.), (7)

only δ = x, x ± y have contributions to thex-component and
xi,i+δ = 1 in our coordination. The charge current density
along thex-axis is defined as

JQ
x (ri) ≡ −

δH′

δAx(ri, t)
= eJp

x (ri) + e2Kx(ri)Ax(ri, t). (8)

The kinetic energy is calculated to zeroth order ofAx(ri), cor-
responding to the diamagnetic part, and that of the paramag-
netic partJP

x (ri) is calculated to the first order ofAx(ri). In the

interaction representation we have

〈JP
x (ri)〉 = −i

∫ t

−∞

〈[JP
x (ri, t),H′(t′)]−〉0dt′

= −
eAx(r, t)

Ns
Πxx(q, ω), (9)

〈〉 means the expectation value based on the wave function
of Htot while 〈〉0 corresponds to the wave function ofH0.
In the Matsubara formalism we have the current-current cor-
relation Πxx(q, iω) =

∫ β

0
dτeiωτ

Πxx(q, τ), and Πxx(q, τ) =
−〈TτJP

x (q, τ)JP
x (−q, 0)〉0 =

∑

m1m2
Π

m1m2
xx (q, τ) where Tτ is the

time ordering operator,JP
x (q, τ) = eτH0 JP

x (q)e−τH0, JP
x (q) =

∑

i e−iq·r i JP
x (ri) =

∑

m1m2
JP

m1,m2
(q) is a summation overk. Cal-

culation ofΠxx(q, iω) is in the framework of equations of mo-
tion of Green’s function,

dΠm1m2
xx (q, τ)

dτ
= −[JP

m1,m2
(q), JP

x (−q)]−

− 〈Tτe
H0τ[H0, JP

m1,m2
(q)]−e−H0τJP

x (−q, 0)〉0.

A lengthy but straightforward algebra leads to

Πxx(q, iω)=
∑

km1m2

Yk,k+q
m1m2

Yk+q,k
m2m1

( f (Ek,m1) − f (Ek+q,m2))

iω + (Ek,m1 − Ek+q,m2)
, (10)

where f is the Fermi distribution function. Through analytic
continuation,Πxx(q, ω) is obtained. Whenω = 0, the deriva-
tive of f has an important contribution toΠxx(q, iω). The
quantityYk,k+q

m1m2
can be expressed as

Yk,k+q
m1m2

=
2
Ns

[t4(ξ4(sinkx−y + sinkx+y) + ξ
′
4(sinkQ

x−y + sinkQ
x+y))

+ t3(ξ2 sinkx−y + ξ̃2 sinkx+y + ξ
′
2 sinkQ

x−y + ξ̃
′
2 sinkQ

x+y)

+ t2(ξ2 sinkx+y + ξ̃2 sinkx−y + ξ
′
2 sinkQ

x+y + ξ̃
′
2 sinkQ

x−y)

+ t1(ξ1 sinkx + ξ
′
1 sinkQ

x )], (11)

with ξ1 = α
k,k+q
1,3 +α

k+q,k
3,1 +α

k+q,k
9,11 +α

k,k+q
11,9 , ξ2 = α

k,k+q
1,1 +α

k,k+q
9,9 ,

ξ̃2 = α
k,k+q
3,3 + α

k,k+q
11,11 , ξ4 = α

k,k+q
1,2 + α

k+q,k
2,1 + α

k+q,k
9,10 + α

k,k+q
10,9 ,

andαk,k′

i j = T
∗
i,m1

(k)T j,m2(k
′) + T∗i+1,m1

(k)T j+1,m2(k
′). The cor-

respondingξ′i is connected toξi by changingαi, j into αi+4, j+4.
kx±y denoteskx ± ky and kQ

x±y = kx±y + Q. The superfluid
weight measures the ratio of the superfluid density to the
massDs/πe2

= ρs/m∗ = −〈J
Q
x (ri, t)〉/e2Ax(ri); and the Drude

weight is a measurement of the ratio of density of mobile
charges to their mass [1, 33–35],

Ds

πe2
=

1
N
Πxx(qx = 0, qy → 0, ω = 0)− 〈Kx〉0, (12)

D
πe2

=
1
N
Πxx(qx = 0, qy = 0, ω→ 0)− 〈Kx〉0. (13)

Figure 1 shows the variation ofDs, D, M and supercon-
ducting (SC) order∆ = 1

4

∑

α(∆αi,i+x+y + ∆
s
i,i+x−y), as functions

of x at different temperatures.D does not change much as
the temperature varies and we plot it clearly in Figs. 1(c) and
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FIG. 1: (color online) Panels (a), (c) and (d) plotDs (black solid
line), D (orange dashed line ),∆ (red dotted line) andM (blue dash-
dot-dotted line) as functions ofx at different temperatures. The right
scale is forDs andD while the left scale is for∆ and M. Panel (b)
plots λ(0) as a function ofx. The inset of panel (b) is the phase
diagram of temperatureT andx.

1(d). At zero temperature, we do not show the plot ofD be-
cause in almost all the doping levelsDs = D as long as∆ has
finite value; Fig. 1(a) shows that in the overdoped regime, su-
perconducting gap disappears andDs drops to zero, whileD
is finite just like the plot in panels (c) and (d), hence in the
overdoped levels when∆ = 0 system corresponds to metal.
We can see from Fig. 1(a) that atT = 0, Ds increases with the
increase ofx till it reaches the SDW boundary. In the under-
doped regionx < 0.05, most of the Fermi surfaces are gapped
by SDW [24, 29], doping is the major source of charge car-
rier, hence superfluid density as well as mobile charge den-
sity increase linearly with the increase ofx. While at larger
doping 0.5 < x < 0.1, SDW is suppressed, the gapped sur-
faces shrinks significantly and more intrinsic charge carriers
are released to the system in addition to the doping carriers.
This is the reason why the increase ofDS = D with doping
becomes more dramatic than the linear dependence in this re-
gion. After SDW disappears,∆ dominates the behavior ofDs,
and shows a flat behavior in a considerably large doping range.
In panel (b) we show the variation ofλ(0) as a function ofx
for x ≤ 0.3. We defineρs(T ) = Ds(T ) = λ(T )−2 with arbitrary
units. Compared to the phase diagram in the inset, we find
that in the SDW+ SC coexisting regime,λ(0) shows a sharp
increase with the decrease ofx, which is in good agreement
with experiments [12, 13].

An external magnetic field can couple relevant correlation
functions, henceρs is a non-local quantity, describing the stiff-
ness of the system. Figs. 1(c) and 1(d) show that at finiteT ,
Ds deviates fromD, the suppression ofDs is stronger than that
of ∆. For theU = 4 case, the results (not shown here) are very
similar to the results presented here.
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FIG. 2: (color online) Density of states atT = 0.02 for differentx.
All those calculations are for theU = 3.4 case.
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FIG. 3: (color online) Panels (a), (b) and (c) plot the renormalized
superfluid densityρs(T )/ρs(0) and superconducting order parameter
∆(T )/∆(0) as functions of the temperatureT/Tc at different doping
levels forU = 3.4. Tsdw is the transition temperature for SDW. The
green dotted lines are linear-in-T fitting functions. Panels (a′), (b′)
and (c′) are similar but forU = 4.0. Panel (d),(d′) show the compar-
ison of our results with experiment data atx = 0.08. Blue solid line
in the inset of panel (d′) plotsρq(T )/ρ(Tc) as a function ofT/Tc at
x = 0.08 and the red dashed line is the aid for the eyes.

Temperature dependence of superfluid density is a quantity
reflecting low-energy residual density of states(DOS) inside
the superconducting gap. Eq.(10) indicates that the difference
betweenD and Ds is related to the derivation off near the
Fermi surface, and can be understood as excitation of quasi-
particlesρq. Fig. 2 shows the DOS atT = 0.02. Forx = 0.05
and 0.1 the gap is considerably larger, henceDs is equal or
almost equal toD. Although there is a gap atx = 0.2(see
Fig. 2(c)), it is small, therefore,f ′(Ek) has its contribution to
Ds, and thereforeDs deviates fromD.

We choose three typical doping levels, to show the tem-
peratureT/Tc dependence ofρs(T )/ρs(0) and∆(T )/∆(0) for
U = 3.4 as well as forU = 4.0. From fig. 3 we can see
that the suppression of superfluid density is stronger than that
of superconducting order parameter in all cases. At low tem-
peratures, the curve ofρs(T )/ρs(0) is flat, a characteristic of
nodeless superconducting gap.

As T increases, a linear-in-T behavior of superfluid den-
sity is dominant in all cases. ForU = 3.4 cases, linear func-
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FIG. 4: (color online) Panel (a) plots∆λ(T ) as a function ofT/Tc

at typical selected doping forU = 4, the dashed-lines are the corre-
sponding fitting functions. Panel (b) is the Uemura plot of Fe-base
superconductor. Thex-axis isρs(0) for different doping, they-axis is
the correspondingTc for the given dopings.

tions−1.55T/Tc + 1.52 and−1.57T/Tc+1.49 are used to fit
this kind of behavior forx = 0.1 andx = 0.2 respectively,
which are shown in Figs. 3(b) and 3(c). It is consistent with
the power-law behavior observed in the experiments [11–16].
Interestingly, they are in good agreement with the direct mea-
surements of superfluid density in films of Fe-pnictide super-
conductors in Ref.14. We show our results and the experiment
data [see Fig.1(a) in Ref.14] together in Figs.3(d) (u=3.4 case)
and 3(d′) (u=4.0 case), and their consistence is explicit. In or-
der to understand the wider linear T-dependence ofρs(T ), in-
set in Fig. 3(d) plots the renormalizedρq(T )/ρ(Tc) as a func-
tion of T/Tc at x = 0.08, the red dashed line is aid for eyes.
We can see that the number of excited quasiparticles is expo-
nentially small at low T with strong SC, but it is proportional
to linear T within a certain temperature range before SC dis-
appear. The easy appearance of linear-in-T behavior is closely
related to anisotropicS ± superconducting paring, since in-gap
states(Andreev states) may be induced in this case. The ra-
tio 2∆k(0)/kBTc at optimal doping is about 4.3 (4.5) for the
U = 3.4 (4.0) system.

Experiments always measure∆λ(T ) = λ(T ) − λ(0), so we
show the evolution of∆λ(T ) at selected doping concentrations
for U = 4.0 in Fig. 4(a). The results ofU = 3.4 are very sim-
ilar. In the low-temperature range the curve is flat. At high
temperature approaching the disappearance of superconduc-
tivity, there is a jump for the value of∆λ(T ), where we de-
note by the colored solid dots. We fit the evolution of∆λ(T )
a power-law behavior. See Fig. 4(a), the corresponding fit-
ting function 4(T/Tc)3.6(2(T/Tc)3 ) is for data ofx = 0.05
(x = 0.1, 0.2) and it may be the reason why the experiments
give different exponents for different samples.

Experiments have shown that the Uemura relation [36]
holds [37] for 1111 system but does not hold for 122 system
[38]. In Fig. 4(b), we plotTc versusρs(0) based on our model.
The blue-dashed line (red-dotted line) is for theU = 3.4
(U = 4.0) system. It shows that at very low doping levels,

aboutx < 0.035(grey point), both theU = 3.4 andU = 4 sys-
tems follow the same empirical linear relation(grey line).As
Tc close to the maximum andρs(0) saturate atx > 0.08 (0.1)
for U = 3.4 (U = 4.0), and the data significantly deviate from
the linear relation. This is because in very underdoped region
the doping is major source of charge carriers and the Uemura
relation is valid here.

Based on a two-orbital phenomenological model, we have
studied the stiffness of superconductivity in clean iron-based
superconductors. At zero temperature, we findλ(0) a sharp
jump asx decreases in the regime of coexisting SDW+ SC
orders; the variation ofλ(0) as a function of doping is in good
agreement with experiments [12]. As far as we know this is
a new theoretical result. At low temperatures,ρs(T )/ρs(0) is
flat, then show a linear-in-T behavior before the system loses
its superconductivity. It is in good agreement with experi-
ment of direct measurement of superfluid density in films [14].
The evolution of∆λ(T ) roughly follows the power-law behav-
ior with different exponents corresponding to different doping
levels. Only at low doping levels, the empirical Uemura linear
relation holds for the iron-based superconductors.
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