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We present a numerical study of the field-angle resolved oscillations of the thermal conductivity and specific
heat under rotated magnetic field in the AyFe2−xSe2 [A=K,Rb,Cs,(Tl,K)] superconductors, using realistic two-
band Fermi surface parameterization. Our key finding is that even for isotropic pairing on an anisotropic Fermi
surface, the thermodynamic quantities exhibit substantial oscillatory behavior in the superconducting state, even
much below the upper critical field. Furthermore, in multiband systems the competition of anisotropies between
two Fermi surfaces can cause a double sign reversal of oscillations as a function of temperature, irrespective of
gap anisotropy. Our findings put severe constraints on simple interpretations of field-angle resolved measure-
ments widely used to identify the angular structure of the superconducting gap.

PACS numbers: 74.20.Rp,74.70.Xa,74.25.Uv,74.25.N-

The identification of the symmetry of the superconducting
(SC) order parameter is an important step toward unraveling
the pairing mechanism in any novel superconductor. For iron
pnictides, the presence of hole and electron pockets at the Γ
and M points has led to the proposal of s±-wave pairing [1–
4] due to interband nesting between them. However, the re-
cent discovery of the layered high-temperature superconduc-
torsAyFe2−xSe2, withA=K,Rb,Cs,(Tl,K), has challenged the
consensus for the pairing symmetry and mechanism of super-
conductivity in this class of materials [5]. The iron-selenide
family has a crystal structure similar to the iron-pnictide ma-
terial BaFe2As2, but with hole pockets eliminated completely
from the Fermi surface (FS) at the Γ point in the Brillouin
zone, yet the SC transition temperature Tc is comparable to
that of iron pnictides. Various theoretical proposals have been
put forward which support either the survival of s-wave pair-
ing [6–8], the emergence of nodal d-wave gap [9, 10], or
more popularly nodeless d-wave gap [11–14]. Indirect experi-
mental evidence suggests isotropic pairing symmetry [15–17],
consistent with isotropic gaps reported in angle-resolved pho-
toemission spectra [18, 19]. Therefore, direct high-precision
imaging of the structure of the gap function and the location
of the nodes, if they exist, is required. An effective and ac-
curate technique for measuring the angular structure of the
bulk gap relies on probing thermodynamic properties in a
rotating in-plane magnetic field. For cuprate, pnictide, and
heavy-fermion superconductors, this technique has been used
widely to identify the SC pairing symmetry by mapping the
field-angle dependence of the thermal conductivity or specific
heat onto the angular structure of the SC gap and its pairing
symmetry [20–31].

In this Letter, we demonstrate that detailed knowledge of
the FS topology and parameters is necessary for relating the
nature of the oscillations to the nodes or minima of the gap
structure. This is especially important for materials where the
FS anisotropy is substantial, as is the case in layered iron se-
lenides. To be quantitative and unambiguous about the shape
of the SC gap, it is required to incorporate realistic FS topol-
ogy, Fermi velocities, and density of states (DOS) at the Fermi

level into self-consistent calculations of thermal properties.
To accomplish this goal, we focus on layered iron-selenide

superconductors and study the information embedded in the
angle-resolved specific heat coefficient, γ = C/T , and ther-
mal conductivity, κ, in a rotating in-plane magnetic field using
realistic tight-binding dispersions derived from first-principles
electronic structure calculations. The main results of our cal-
culations are: (1) For purely isotropic pairing symmetry, mod-
erate FS anisotropies of layered iron-selenide superconductors
are sufficient to introduce field-angle-dependent oscillations
in the specific heat and thermal conductivity over a significant
range of temperatures and at intermediate to high magnetic
fields in the SC state. We find an inversion of the oscillation
pattern as a function of temperature, which shows that oscil-
lations are not a simple consequence of the anisotropy of the
upper critical field. Therefore not all such oscillations at in-
termediate fields can be taken as proof of strong anisotropy
in the SC gap. (2) For isotropic gaps on the FSs, the oscil-
lations in γ may change sign once or twice as a function of
temperature. We identify the out-of-phase FS anisotropies be-
tween bands as the source for two sign reversals. (3) Complex
field-angle dependence of the specific heat and thermal con-
ductivity for anisotropic FSs suggests that comparison of both
quantities with material-specific theories is needed to identify
the pairing symmetry and gap structure.

Anisotropy in FS and SC gap.− In the iron selenides the Fe
vacancy completely eliminates the hole pocket at the Γ point,
and the FS consists of two concentric electron pockets at the
M point in the 2-Fe unit cell. This picture follows from first-
principles calculations [32] and photoemission spectroscopy
[18, 19]. Here, we use a first-principles derived tight-binding
parameterization of the electronic dispersion [13] with a weak
kz dispersion as input to obtain all necessary FS parameters
for a self-consistent transport calculation. Cuts of the corre-
sponding FSs are shown in Fig. 1(a) with calculated normal-
state DOS in 1(b) and moderately anisotropic Fermi velocities
in 1(c). These figures demonstrate the out-of-phase in-plane
anisotropies of the FS parameters on the electron pockets at
the M points.
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FIG. 1. (Color online) (a) Different colors show different electron-
pockets at kz = 0 within the tight-binding model of the 2-Fe unit
cell [13]. (b) Polar plots of computed normal-state DOS at the Fermi
level show the out-of-phase anisotropy between bands (same color
as in (a)). (c) The tight-binding in-plane Fermi velocities at kz = 0
vs. azimuthal FS angle φ exhibit out-of-phase FS anisotropy in units
of lattice parameter a. (d) Gap functions ∆n(φ) on FS1 (solid) and
FS2 (dashed) for pairing symmetries considered. The nodeless states
have negligible FS anisotropy. (e)-(f) Field-induced total SC DOS
at T = 0 vs. energy at two representative field angles α for s and
dx2−y2 pairing. Note the low-energy crossings in the DOS (arrows)
related to the low-T sign reversals in the oscillations of γ and κ; we
used H/Hc2 = 0.5 for s wave and 0.1 for dx2−y2 wave.

We consider three nodeless gaps with s, s± = cos kxa +
cos kya, and extended d̃xy = sin (kxa/2) sin (kya/2) sym-
metry, shown in Fig. 1(d). Since the FSs are centered around
M=(π, π, 0), and its equivalents, all three including d̃xy are
nodeless on the FS [13]. As all nodeless gaps exhibit very
similar behavior, and thus we show detailed results only for
the isotropic pairings s. For the nodal SC gaps, we con-
sider two pairings symmetries as dx2−y2 = cos kxa− cos kya
and dxy = sin kxa sin kya, with detailed results presented for
dx2−y2 pairing. The gap structure for each pairing on the FSs
is demonstrated in details in the supplementary material (SM)
[34].

Brandt-Pesch-Tewordt (BPT) approximation.− We solve
the quasiclassical Eilenberger equation within the extended
BPT approximation [31, 35–41] to solve for the field-
angle induced SC DOS, Nn(ω,kf ;H), together with the
self-consistency equations for the SC order parameter,
∆n(kf ;H), and transport lifetime, τn(ω,kf ;H). Here H is
the magnetic field applied at angle α with respect to the (100)
direction, kf is Fermi momenta and n = 1, 2 is the band in-
dex. The transport lifetimes encodes the combined effects of
impurity and vortex scattering. The BPT approximation im-
plies that the DOS is obtained by averaging the normal quasi-
particle Green’s function over the unit cell of the Abrikosov
vortex lattice. This produces quantitatively correct results near
the upper critical field over the range 0.5Hc2 . H < Hc2

[39, 42, 43] for isotropic gap, but it extends to low fields for
nodal and strongly anisotropic gaps [31, 41, 44]. The SC gaps
are evaluated by solving the coupled BCS gap equations for
∆n(kf ;H) at each applied field H . We simplify the problem
by considering interband pairing only and eliminate the pair-
ing potential in favor of the bare transition temperature Tc0
within weak-coupling theory [35]. Details of the calculations
are given in the SM [34].

Based on the above-mentioned self-consistent solutions,
the specific heat, C, and thermal conductivity, κ, are com-
puted numerically from the solution of the Eilenberger equa-
tions [36, 37]. However, to get a qualitative understanding of
how the interplay of FS anisotropy and gap anisotropy con-
tribute to the results of C = C1 + C2 and κ = κ1 + κ2, we
write down the approximate low-T expressions:

Cn(α)≈
∫ ∞
−∞

dω
ω2〈Nn(ω,kf ;H)〉FS

4T 2cosh(ω/2T )2
, (1)

κxxn (α)≈
∫ ∞
−∞

dω
ω2〈vxn(kf )2Nn(ω,kf ;H)τn(ω,kf ;H)〉FS

2T 2cosh(ω/2T )2
.

(2)

The angle-dependent SC DOS is given by the unit-
cell averaged quasiclassical retarded Green’s function gn:
Nn(ω,kf ;H) = −Nfn(kf )Im gn(ω,kf ;H)/π. Here
〈. . . 〉FS stands for the FS integrals and vn is the Fermi ve-
locity in each band, see Fig. 1(c). In the normal state the
DOS becomes Nn(ω,kf ;H) = Nfn(kf ) ∼ 1/|vn(kf )| and
τn(ω,kf ;H) = τimp [45].

The dominant contribution to the anisotropy in Cn at low T
originates from the anisotropy in the SC DOS at ω = 0,

〈Nn(0,kf ;H)〉FS ≈

〈
Nfn(kf )√

1 +
(

2Λ∆̃n(kf ;H)
|v⊥

n (kf ;H)|

)2

〉
FS

, (3)

where Λ = (~c/2|e|H)
1/2 is the magnetic length of order the

coherence length ξ between 0.5Hc2 < H < Hc2, |v⊥n | is the
component of the rescaled Fermi velocity normal to H , and
∆̃n is the impurity renormalized order parameter [36]. For
a cylindrically symmetric FS, the angle-dependence of |v⊥n |
is determined solely by the field direction [36], its interplay
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FIG. 2. (Color online) (a1) Normalized thermal conductivity κ/T
along (100) direction (normalized to its normal-state value κN/Tc)
as a function of in-plane field-angle α at fixed H/Hc2 = 0.5 for
s wave, plotted from low to high T (bottom to top curves). Each
subsequent curve is shifted vertically by 0.01 for clarity. Each curve
is colored by the amplitude of the fourfold oscillation given in panel
(a2); a uniform color map is used for values below −0.01 and above
0.01. (a2) The fourfold amplitude of κ/T is plotted as a function of
T . The vertical arrows in the bottom row depict the temperatures at
which curves in top panels are shown. Panels (b1)-(b2): Normalized
specific heat for same parameters as in (a1)-(a2). Panels (a) and (b)
are for purely isotropic s-wave case, while similar plots in (c) and (d)
are shown for nodal dx2−y2 -wave symmetry at H/Hc2 = 0.1.

with the profile of ∆̃n(kf ;H) gives the anisotropy of Cn(α).
For complex FSs, there is an additional weighting of the inte-
gral due to momentum-dependence of Nfn(kf ) and vn(kf ),
leading to strong field-angle oscillations even for an isotropic
gap.

Calculations for single-band models [31, 36, 46, 47] and ex-
periments on several classes of materials [29, 48, 49] demon-
strated that the anisotropy in heat capacity undergoes inver-
sion as T and H change. We qualititively reproduce the gen-
eral sign reversal of the oscillations for nodal pairings even
after replacing quasi-cylindrical FSs with more realistic and
material-specific FS anisotropies. In addition, for an isotropic
gap, we find that even for a single strongly anisotropic FS,
one or more inversion(s) of the oscillation can occur. Multi-
band effects add additional complexity due to competing FS
anisotropies and self-consistently evaluated multiple gap am-
plitudes, and the intuitive one-to-one mapping between oscil-
lations and nodal directions becomes easily lost at finite tem-
peratures and fields.

Results and discussions.− Figs. 1(e)-1(f) show the field-
induced SC DOS as a function of quasiparticle energy below
the SC gap for α = 0o and α = 45o for s and dx2−y2 OPs.
We immediately see that the difference between SC DOS at
these two representative angles changes sign at finite ω for
both cases, opening the possibility for the low-T sign reversal
of the oscillations in the specific heat as a function of temper-
ature.

We present the full angle-dependent profiles of C(α) and
κ(α) for several temperatures at a representative low field for
an isotropic s-wave gap (atH/Hc2 = 0.5) and a nodal dx2−y2

gap (at H/Hc2 = 0.1) in Fig. 2. It is interesting to note
that there is a prominent angle dependence for the s-wave gap
(Figs. 2(a) and 2(b)), whose nature is far more complex than
what can be interpreted by conventional harmonics of pair-
ing symmetries. Especially, at low T the peak position of
C(α) is shifted from high-symmetry values and lies some-
where between α = 0o to 45o, see Fig. 2(b1). Such com-
plex field-angle dependence is a manifestation of the out-of-
phase anisotropies on both FSs, shown in Fig. 1(a)-1(c). For
nodal dx2−y2−pairing, the behavior of oscillations of C(α)
and κ(α) is similar to results obtained for quasi-cylindrical
FSs [35], however the amplitude of oscillations and the loca-
tion of sign reversals are modified [56].

We estimate the amplitudes of the fourfold oscilla-
tions by defining C4α(T ) = ΠC

0 − ΠC
45, where ΠC

α =
[C(α, T )/T ]/[CN/Tc] and κ4α(T ) = [Πκ

0 + Πκ
90]/2 − Πκ

45,
where Πκ

α = [κxx(α, T )/T ]/[κxxN /Tc], and CN and κN are
their corresponding normal-state values at Tc [57]. Such def-
inition removes any twofold contribution from κ. The cor-
responding results are plotted in the lower panels of Fig. 2.
We obtain several sign reversals in C4α(T ) and κ4α(T ) for
both isotropic s-wave and nodal d-wave gaps. Earlier such
sign-reversal feature was only found for highly anisotropic or
nodal gap structure [29, 31, 35, 36, 48, 49]. For this realistic
FS parameterization of the double layered iron selenide, we
find indications of two sign reversals even for the s-wave gap.
Although the second sign reversal at high T may be difficult
to discern, it is visible in Figs. 2(b1) and 2(b2) and as a white
region in Fig. 3(a1). We verified that the magnitude of oscilla-
tions depends on the out-of-plane electronic hopping, defined
in SM[34]. In addition, our calculations show that the ampli-
tude of fourfold oscillations for s-wave pairing is roughly half
of that for nodal pairing.

It is noteworthy that the T -dependence of the fourfold os-
cillations in Figs. 2(b2) and 2(d2) reflects on the energy de-
pendence of the SC DOS in Figs. 1(e)-1(f) at the same value
of H . For example, for s-wave gap C(α = 45o) > C(α =
0o) at low T in Fig. 2(b2), which corresponds to N(α =
45o) > N(α = 0o) at low energy in Fig. 1(e). The oppo-
site anisotropy in C(α) at high T corresponds to the inver-
sion of the DOS anisotropy at higher energies. We conclude
that the anisotropy in C(α) for isotropic s-wave pairing is not
merely a manifestation of the anisotropy in Hc2 (irrelevant at
low fields, since it is tied to the FS shape), but is a reflection
of the field-induced spectral-weight redistribution inside the
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FIG. 3. (Color online) Contour maps of fourfold amplitude oscil-
lations of normalized specific heat, C4α (top row), and normalized
thermal conductivity κ4α (bottom row) in the H-T phase diagram.
Each column denotes a different gap symmetry. All plots use the
same color map (red to blue); a uniform color map is used for values
below -0.01 and above 0.01. Note the fourfold amplitude is given
with respect to H//(100), i.e., a negative value corresponds to a
minimum at α = 0o. Here Tc(H) is defined by the vanishing of
both gaps for each symmetry, which determines the line of the upper
critical field Hc2.

gap.
In Fig. 3, we show the contour map of the amplitude of the

fourfold oscillations extracted from the normalized γ = C/T
(top row) and κ/T (bottom row) for two nodeless and two
nodal gaps. Earlier calculation using quasi-cylindrical FSs
showed that the specific heat oscillation simply changes sign
between the dxy and dx2−y2 symmetries, while the over-
all phase diagram remains very much the same between
them[36]. After the inclusion of realistic and material-specific
FSs in this work, we find substantial quantitative differences
in the location of the sign-reversal lines between these nodal
gaps in Figs. 3(c1) and 3(d1), due to the interplay of the SC or-
der parameter with the FS anisotropies. Hitherto unknown is
the intriguing result of both low-T (strong) and high-T (weak)
sign reversals in the fourfold oscillations of C(α) and κ(α)
for isotropic gaps, at moderate and high magnetic fields, see
Figs. 3(a) and 3(b). We verified for s-wave pairing that the
high-T sign reversal is robust and remains at nearly the same
location for a single-band superconductor with identical FS,
while the low-T feature disappears. Similarly, the low-T sign
change does not exist for two-band models with similar (in-
phase) angular variations of Fermi velocities.

The striking feature of the phase diagrams for the heat ca-

pacity for nodal and nodeless cases in the top panels of Fig. 3
is that they all look qualitatively similar in the sense that they
all exhibit sign reversals around the same T and H . The same
is true for the phase diagram of the κ4α term in the thermal
conductivity. Furthermore, the sign of the fourfold oscilla-
tions can sometimes be different for C4α and κ4α in the same
region of phase diagram, as in the high-H and low-T region
and vice versa for dx2−y2 -pairing in Fig. 3(d). This suggests
that field-angle studies of each quantity alone are insufficient
to distinguish between pairing symmetries. A simultaneous
study of both C(α) and κ(α), including the comparison of
the complex angle-dependent profiles and T behavior, is nec-
essary to image the gap structure. Our field-angle-dependent
results of the nodal dx2−y2 -wave gap in the H-T phase di-
agram are in qualitative agreement with recent specific heat
data of CeIrIn5 [49].

Conclusions.− The main conclusion of our work is that a
mere observation of oscillations and sign reversals in C(α)
or κ(α), combined with the Hc2 anisotropy, is insufficient
to identify the presence of nodes or minima in the gap, and
their interpretations require detailed knowledge of the un-
derlying FS anisotropy. For multiband systems, the situa-
tion is further complicated by the interplay between multi-
band FS anisotropies and multiple SC gaps in that substan-
tial fourfold oscillations and sign reversals can occur even for
purely isotropic gap. These results are robust in the region
of 0.5Hc2 < H < Hc2 for isotropic gaps, and its region of
validity extends to lower field with increasing gap anisotropy.
Our results suggest that not only realistic theoretical calcula-
tions including field-induced impurity effect on mutiband sys-
tems are necessary,[53] the field-angle measurements should
also be compared with T -dependence of the penetration depth,
specific heat, and residual electronic term of κ/T measure-
ments for the detection of pairing symmetry[50–52]. In fact,
in other probes such as quasiparticle interference (QPI) pat-
tern seen in scanning tunneling microscopy/ spectroscopy
(STM/S),[55] the consideration of the field induced impurity
effect and the inclusion of realistic FS anisotropy should play
an equally important role in the interpretation of data[54].
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