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Abstract

Hydrogen adatoms are shown to generate magnetic moments inside single layer graphene. Spin

transport measurements on graphene spin valves exhibit a dip in the non-local spin signal as a

function of applied magnetic field, which is due to scattering (relaxation) of pure spin currents by

exchange coupling to the magnetic moments. Furthermore, Hanle spin precession measurements

indicate the presence of an exchange field generated by the magnetic moments. The entire experi-

ment including spin transport is performed in an ultrahigh vacuum chamber, and the characteristic

signatures of magnetic moment formation appear only after hydrogen adatoms are introduced. Lat-

tice vacancies also demonstrate similar behavior indicating that the magnetic moment formation

originates from pz-orbital defects.

PACS numbers: 72.80.Vp,85.75.-d,75.30.Hx,72.25.Rb
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Many fascinating predictions have been made regarding magnetism in graphene including

the formation of magnetic moments from dopants, defects, and edges [1–8]. While several

experimental techniques provide insight into this problem [9–21], lack of clear evidence for

magnetic moment formation hinders development of this nascent field. Studies based on bulk

magnetometry [9–16] directly measure magnetic properties, but because it measures the total

magnetic moment (not just the signal from graphene) it is difficult to rule out artifacts from

environmental magnetic impurities. Transport [17–19] and scanning tunneling microscopy

(STM) [20, 21] locally probe the graphene, but so far these measurements have been charge-

based, so data are subject to various interpretations [22]. Thus, in order to convincingly

demonstrate the formation of magnetic moments inside graphene due to dopants and defects,

it is essential to employ techniques that directly probe the intrinsic spin degree-of-freedom

of the magnetic moment while ensuring the signal originates from the graphene sheet under

investigation.

In this Letter, we utilize pure spin currents to demonstrate that hydrogen adatoms and

lattice vacancies generate magnetic moments in single layer graphene. Pure spin currents are

injected into graphene spin valve devices and clear signatures of magnetic moment formation

emerge in the non-local spin transport signal as hydrogen adatoms or lattice vacancies

are systematically introduced in an ultrahigh vacuum (UHV) environment. Specifically,

introduction of these point defects generate a characteristic dip in the non-local signal as

a function of magnetic field. This feature is due to scattering (relaxation) of pure spin

currents by localized magnetic moments in graphene and is explained quantitatively by a

phenomenological theory based on spin-spin exchange coupling between conduction electrons

and magnetic moments. Furthermore, we observe effective exchange fields due to this spin-

spin coupling, which are of interest for novel phenomena and spintronic functionality [23–26]

but have not been seen previously in graphene. Thus, these results provide the most clear

and direct evidence for magnetic moment formation in graphene and demonstrate a method

for utilizing localized magnetic moments to manipulate conduction electron spins.

For a systematic investigation, the spin transport measurement is first performed on

a pristine single layer graphene (SLG) spin valve as a control measurement. Then,

dopants/defects are controllably introduced to the SLG and the measurement is repeated.

The sample remains in UHV during the entire process. Therefore, observed signatures of

magnetic moment formation are caused by the adsorbed hydrogen or lattice vacancies.
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Experiments are performed on non-local SLG spin valves [27–29] (Fig. 1a) consisting of

two outer Au/Ti electrodes (a and d) and two ferromagnetic (FM) Co electrodes that make

contact to SLG across MgO/TiO2 tunnel barriers (b and c). The Co electrodes are capped

with 5 nm Al2O3 to protect from hydrogen exposure. The tunnel barrier and capping layer

are present only at the site of the FM electrodes, leaving the rest of the graphene uncovered.

The device is fabricated on a SiO2/Si substrate (300 nm thickness of SiO2) where the Si is

used as a back gate. Details of device fabrication are published elsewhere [29].

The charge and spin transport properties of pristine SLG spin valves are measured at 15

K using lock-in techniques. The gate dependent resistivity (ρG) of a representative sample A

(black curve in Fig. 1b) exhibits a maximum at the gate voltage (VG) of 0 V, which defines the

Dirac point (VD = 0 V). This sample exhibits mobility (µ) of 6105 cm2/Vs. To investigate

spin transport in the SLG device (Fig. 1a), a current (I) is applied between electrodes b and

a, injecting spin-polarized carriers into graphene directly below the FM injector, b. The spin

population diffuses along the sample as a pure spin current (x-axis) and the spin density is

measured at the FM spin detector, c, as a voltage difference (V ) between electrodes c and

d. An applied magnetic field (Bapp,y) along the electrode magnetization direction (y-axis)

is used to control the relative orientation of spin injector and detector magnetizations. For

parallel alignment, the measured non-local resistance (RNL = V/I) is positive whereas for

antiparallel alignment RNL is negative. The non-local spin signal is defined as the difference

between parallel and antiparallel states (∆RNL = RP
NL − RAP

NL ). A typical scan of RNL as

a function of Bapp,y (Fig. 1c) displays discrete jumps as the electrode orientation changes

between parallel and antiparallel. This sample exhibits a ∆RNL of 8.8 Ω (sample A with

VG − VD = -15 V). A constant spin-independent background is subtracted from all RNL

data presented in this study. Out-of-plane magnetic fields are applied to generate spin

precession, and the resulting data (Fig. 1d, red for parallel, blue for antiparallel) are fit by

the standard Hanle equation [28, 29] (solid curves) to determine the spin lifetime (τso = 479

ps) and diffusion coefficient (D = 0.023 m2/s ). The corresponding spin diffusion length is

λ =
√
Dτ so = 3.3 µm. Based on these values and a non-local spin signal of 8.8 Ω, the spin

polarization of the junction current (PJ) is calculated to be 20% [30, 31].

Atomic hydrogen is introduced to spin valve devices at 15 K at a chamber pressure of

1 × 10−6 torr [31]. Following 2 s hydrogen exposure, the gate dependent ρG (red curve in

Fig. 1b) is dramatically increased. An additional 6 s of exposure (8 s total) further increases
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FIG. 1. The effect of hydrogen exposure on charge and spin transport in SLG at 15 K. (a) Schematic

illustration of the non-local spin valve device. (b) Gate dependent resistivity for the pristine

graphene (black) and following exposure to atomic hydrogen for 2 s (red) and 8 s (blue). Upon

hydrogen doping, the Dirac point shifts from 0 V to -1 V. (c) Non-local spin transport measurement

for pristine graphene. (d) Hanle spin precession measurement on pristine graphene. (e,f) Non-local

spin transport measurements after atomic hydrogen exposure for 2 s and 8 s, respectively. Both

curves exhibit a dip in RNL at zero applied field, which is caused by spin relaxation induced by

localized magnetic moments.

ρG (blue curve of Fig. 1b) and decreases the mobility to 495 cm2/Vs. Based on the change in

the resistivity, we make an order of magnitude estimate for the hydrogen coverage of 0.1%

[31]. Accompanying the changes in charge transport are also changes in spin transport.

Figures 1e and 1f display RNL of sample A at VG − VD = -15 V as a function of Bapp,y

following 2 s and 8 s of exposure, respectively. The initial ∆RNL of 8.8 Ω is reduced to 2.6

Ω after 2 s of hydrogen exposure and further reduced to 1.4 Ω after 8 s. Interestingly, the
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RNL scans exhibit a dip centered at zero applied field. The dip in RNL is prevalent for both

up and down sweeps of Bapp,y at all measured gate voltages and has been reproduced on

multiple samples following hydrogen exposure. The ratio of the dip magnitude to ∆RNL is

found to increase with increasing hydrogen exposure (comparing Fig. 1e and 1f), indicating

the dip feature is dependent on the amount of adsorbed hydrogen.

To understand the origin of the dip in RNL, we examine the expression for non-local

resistance generated by spin transport [30],

R
(P/AP )
NL = ±2RGe

−L/λ
2∏
i=1

 PJ
Ri

RG

1− P 2
J

+
PF

RF

RG

1− P 2
F


×

 2∏
i=1

1 +
2 Ri

RG

1− P 2
J

+
2RF

RG

1− P 2
F

− e−2L/λ

−1

(1)

where RG = ρGλ/w is the spin resistance of graphene, w is the graphene width, RF =

ρFλF/AJ is the spin resistance of the cobalt, ρF is the cobalt resistivity, λF is the cobalt

spin diffusion length, AJ is the junction area, PF is the spin polarization of cobalt, R1 and

R2 are the contact resistances of the spin injector and detector, respectively, and L is the

distance from injector to detector. This equation shows that the spin density at the detector

electrode depends on both charge and spin properties. First, we confirm that the SLG

resistivity does not change with magnetic field, so the dip is not related to changes in charge

transport [31]. Second, we verify that the dip is not related to hydrogen-induced changes to

the magnetic properties of the FM electrodes. Specifically, the effect of hydrogen exposure is

reversible upon thermal cycling to room temperature and the anisotropic magnetoresistance

of the Co electrodes are not affected by hydrogen exposure [31]. Next, we perform minor

loop analysis on sample B (Fig. 2a) by reversing the magnetic field sweep immediately after

the first magnetization reversal. The inversion of the dip in the antiparallel state (red curve)

proves that the dip is due to increased spin relaxation at low fields. Furthermore, we rule

out hyperfine coupling to nuclear spins as the origin of this increased spin relaxation [31].

As we discuss in the following, emergence of the dip following hydrogen adsorption iden-

tifies magnetic moment formation in graphene. The dip in RNL is a characteristic feature

of spin relaxation from exchange coupling with localized magnetic moments, and can be

illustrated from a simple textbook example of two coupled spins in a magnetic field. The

Hamiltonian is given by H = Aex~Se · ~SM + geµB ~Se · ~Bapp + gMµB ~SM · ~Bapp, where ~Se is

the conduction electron spin, ~SM is the spin of the magnetic moment, ge and gM are the
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FIG. 2. (a) A minor loop scan shows that the dip in RNL for parallel alignment (black) becomes

a peak for antiparallel alignment (red), indicating the feature is due to increased spin relaxation,

as opposed to an artifact of the background level. (b) Fitting the dip in RNL based on the model

of spin relaxation by paramagnetic moments (data in black, fit in red). (c) Field dependence of

longitudinal (red) and transverse (black) spin lifetimes. (d) Hanle precession data following 8 s

hydrogen exposure (red) is fit using equation 3 (black curve).

respective g-factors, and Aex is the exchange coupling strength [32, 33]. Due to the pres-

ence of the exchange coupling, the individual spins are not conserved; only the total spin

~Stot = ~Se + ~SM is conserved. For the case where both ~Se and ~SM are spin-1
2
, the quan-

tum mechanical eigenstates in zero magnetic field are the well-known singlet (Stot = 0) and

triplet (Stot = 1) spin states [34]. At higher magnetic fields the Zeeman terms dominate

and the two spins decouple so that the magnitudes and z-components of ~Se and ~SM become

good quantum numbers, similar to the Paschen-Back effect [34]. Thus, the dip in RNL is

qualitatively explained by the non-conservation of ~Se at low fields due to the presence of

exchange coupling with magnetic moments.

To quantitatively analyze the experimental data, we must consider that a conduction

electron will interact with many localized magnetic moments. Thus, the terms in the Hamil-

tonian involving the conduction electron are given by He = ηMAex~Se · 〈~SM〉+geµB ~Se · ~Bapp =

geµB ~Se ·
(
~Bex + ~Bapp

)
where ηM is the filling density of magnetic moments. The averag-
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ing 〈· · ·〉 is over the ensemble of magnetic moments and the effective field generated by

the exchange interaction is ~Bex = ηMAex〈~SM 〉
geµB

. As the spins diffuse through the lattice they

experience varying magnetic moments which results in varying Larmor frequencies. In the

local frame associated with the electrons this can be described by a time-dependent, ran-

domly fluctuating magnetic field, ~Bex(t) = ~Bex + ∆ ~Bex(t). For the RNL measurements, the

longitudinal spin relaxation due to a fluctuating field is given by [35],

1

τ ex1

=
(∆B)2

τc

1(
Bapp,y +Bex,y

)2
+
(

h̄
geµBτc

)2 (2)

where ∆B is the rms fluctuation and τc is the correlation time [31]. The spin relaxation

rate due to the exchange field is described by a Lorentzian curve which depends explicitly

on the applied field, Bapp,y, resulting in strong spin relaxation at low fields and suppressed

spin relaxation at high fields. Due to the presence of Bex,y in equation 2, ferromagnetic

ordering will produce a dip in RNL that is centered away from zero and is hysteretic, while

paramagnetic ordering will produce a non-hysteretic dip centered at zero field. Thus, the

magnetic moments measured in these experiments are paramagnetic. The total longitudinal

spin lifetime, T total1 , of conduction electrons is dependent on both the usual spin relaxation

due to spin orbit coupling (τso) and longitudinal spin relaxation from the exchange field (τ ex1 ),

such that
(
T total1

)−1
= (τ ex1 )−1 + (τ so)−1. We apply the above model to the non-local spin

transport data presented in Fig. 1f (sample A) and fit using equation (1), λ =
√
DT total1 , and

equation (2) [31]. The resulting fit (red line in Fig. 2b) replicates the shape and magnitude

of the dip measured in RNL (black line in Fig. 2b). The field dependent T total1 (Fig. 2c),

exhibits a minimum of 464 ps at zero field and increases asymptotically towards τso = 531

ps for large Bapp,y. The values obtained for ∆B and τc are 6.78 mT and 192 ps, respectively.

The field-dependent spin relaxation following atomic hydrogen exposure, which emerges as

a dip in RNL, is a clear signature of paramagnetic moment formation.

Spin precession measurements provide further evidence for the presence of magnetic mo-

ments. Figure 2d shows spin precession data for sample A (8 s exposure, VG − VD = -15

V) with FM electrodes in the parallel alignment state. The Hanle curve has considerably

narrowed compared to the precession measurements obtained prior to hydrogen adsorption

(Fig. 1d). The sharpening of the Hanle curve results from the presence of an exchange

field. The injected spins precess around a total field Btot = Bapp,z +Bex,z (along z-axis) that

includes not only the applied field, but also the exchange field from the paramagnetic mo-
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ments. At 15 K and Bapp,z < 100 mT, the magnetization is proportional to the applied field

so that Bex,z = kBapp,z, where k is a proportionality constant. Thus, the spins precess about

Btot with frequency ω = geµBBtot/h̄ = ge(1 + k)µBBapp,z/h̄ = g∗eµBBapp,z/h̄. To properly

account for the enhanced g-factor induced by the magnetic moments, the Hanle equation

must be modified to

RNL = S
∫ ∞

0

e−L
2/4Dt

√
4πDt

cos
(
g∗eµBBapp,zt

h̄

)
e−t/T

total
2 dt (3)

where T total2 is the transverse spin lifetime. As shown in Fig. 2c, the T total2 is related to, but

different from T total1 [31]. Using the field dependent T total2 , the precession data (red circles

of Fig. 2d) is fit to equation 3 (black line) to yield a value of g∗e = 7.13. Physically, g∗e > 2

corresponds to an enhanced spin precession frequency resulting from the exchange field. A

detailed discussion of the Hanle fitting and the gate-dependent properties of the exchange

field are provided in the supplementary information [31]. The dramatic narrowing of the

Hanle peak combined with the emergence of a dip in RNL provides the most direct evidence

to date for the formation of magnetic moments in graphene due to the adsorption of atomic

hydrogen.

We now turn our attention to lattice vacancy defects in graphene. Several theoretical

works suggest the similarity of magnetism due to vacancies and hydrogen-doping [1, 4], as

both should create magnetic moments inside graphene due to the removal/hybridization

of pz orbitals. To produce lattice vacancies in pristine SLG spin valves, we perform Ar-

sputtering at low energies and examine the subsequent non-local spin transport. We again

observe the emergence of a dip in RNL and narrowed Hanle curve, indicating the formation

of paramagnetic moments in graphene [31]. Given the very different chemical and structural

properties of lattice vacancies compared to adsorbed hydrogen, the observation of similar

features in the spin transport data provide strong evidence that the magnetic moments are

created by the removal of pz orbitals from the π-band, as predicted theoretically.

In conclusion, clear signatures of magnetic moment formation are observed in both the

non-local spin transport and Hanle precession data, which emerge only after exposure to

atomic hydrogen or lattice vacancies. The results and techniques presented here are impor-

tant for future developments in magnetism and spintronics.
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