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Collisional relaxation of Coulomb systems is studied in the strongly coupled regime. We use
an optical pump-probe approach to manipulate and monitor the dynamics of ions in an ultracold
neutral plasma, which allows direct measurement of relaxation rates in a regime where common
Landau-Spitzer theory breaks down. Numerical simulations confirm the experimental results and
display non-Markovian dynamics at early times.

More than half a century ago, Landau [1] and Spitzer
[2] derived simple expressions for Coulomb collision
rates that have become fundamental to modern plasma
physics. Precise knowledge of collisional relaxation rates
is essential for understanding plasmas of all varieties. It
is fundamental to energy exchange in multi-species sys-
tems [2] and determines transport properties, such as self-
diffusion rates as well as thermal and electric conductiv-
ities [3]. The underlying theory, however, breaks down
in strongly coupled systems such as Jovian planet interi-
ors [4] and dense-plasma experiments [5], which display
strong correlations between particles. Here, we present
the first direct measurement of thermalization rates in
an unmagnetized, strongly coupled plasma. Exploiting
the very low temperatures in ultracold neutral plasmas
[6, 7], we realize strong coupling conditions at low enough
densities to enable direct time-resolved measurements via
optical manipulation and imaging. The observations are
supported by numerical simulations that moreover high-
light the importance of non-Markovian relaxation effects.

In weakly interacting systems, that are either very hot
and/or very dilute, relaxation is dominated by binary
small-angle scattering events of distant particles. Conse-
quently, a test charge traversing a single-species plasma
of temperature T and density ρ, undergoes Brownian mo-
tion with a corresponding damping coefficient [1, 2]

γ(v) =
2πe4ρ√

m(kBT/2)3
R(v) ln Λ . (1)

where the factor R(v) derives from the so-called Rosen-
bluth potential [8] and m denotes the mass of the test
particle and the plasma charges. The term ln Λ, known
as the Coulomb logarithm, is determined by an upper
cutoff for possible impact parameters that ensures con-
vergence of the relaxation rate. In the original Landau-
Spitzer derivation (LS) it is set equal to the Debye screen-
ing length, λD, beyond which interactions are collectively
screened by the surrounding plasma charges.

Equation (1) is applied to a wide range of plasmas,
but it is only valid when spatial correlations in the sys-
tem are weak. The degree of particle correlations can be
characterized by the ratio of their average potential and
thermal energy, as expressed by the Coulomb coupling
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FIG. 1: (color online). (a) Schematics of the experimen-
tal approach to probe ion relaxation in an ultracold plasma.
Two counter-propagating, circularly polarized lasers, detuned
by ∆pp/2π = −20 MHz from the 5s 2S1/2 − 5p 2P1/2 transi-
tion, optically pump population between the two ground-state
magnetic sublevels (m = ±1/2) of ions in an ultracold stron-
tium plasma. The corresponding level-scheme is shown in (b),
also indicating excited-state decay with the spontaneous emis-
sion rate γ. The optical pumping produces skewed velocity
distributions f±(v) for each of the ground states, which we
probe via ion fluorescence induced by a circularly polarized
light sheet, applied at a variable time t after optical pumping.
A typical, simulated time evolution of the velocity distribu-
tions, f+ (red) and f− (blue), during the optical pumping
stage (gray) and subsequent relaxation is shown in (c).

parameter

Γ = e2/(kBTa), (2)

where a = (4πρ/3)−
1
3 is the average distance between

the plasma charges. A plasma becomes strongly coupled
when Γ > 1, i.e. when interactions start to dominate
thermal motion. The Coulomb logarithm can be written
in terms of the coupling parameter, Λ ∼ Γ−3/2, show-
ing that ln Λ turns negative for Γ & 1, and the LS rate
(1) becomes entirely nonsensical in the strongly coupled
regime, where strong, large-angle scattering [9], correla-
tion effects [10, 11] and collective mode coupling [12, 13]
are expected to play an important role.

Theoretical efforts to understand relaxation under
strong-coupling conditions have largely focused on dense
plasmas [9–12, 14], as produced by intense-laser heat-
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ing of solid-state samples [15]. An accurate description
of relaxation and transport processes is essential for the
interpretation of these experiments [16] and, in partic-
ular, for optimizing conditions for inertial confinement
fusion [17]. Experimental probes of dense plasmas have
advanced tremendously [18, 19], and allow indirect in-
ference of relaxation rates through theoretical modeling
of other observables [20, 21]. However, direct and pre-
cise measurement of relaxation rates remains an open
challenge [22], largely due to the fast dynamical time
scales, complicated initial conditions and complex evo-
lution at solid density. Ultracold neutral plasmas [6, 7]
present an appealing platform for studying strongly cou-
pled plasma physics under simple and well-controllable
conditions. Because of their low densities, ultracold neu-
tral plasmas evolve slowly enough that the dynamics of
many plasma parameters can be measured directly [23–
30] with high temporal resolution.

We create an ultracold neutral plasma by photoion-
izing laser-cooled strontium atoms in a magneto-optical
trap. Peak plasma density is varied from ρ ∼ 109 −
1010cm−3 by changing the delay between release of the
trapped atoms and photoionization. By tuning the ion-
ization lasers, we set the initial electron temperature to
Te(0) = 105 K while the initial kinetic energy of the ions
equals the thermal energy (∼ 10mK) of the laser-cooled
atoms. This yields weakly coupled electrons (Γe ∼ 10−2)
and would place the ions deep into the strongly coupled
regime with Γ ∼ 103. However, photoionization produces
initially uncorrelated ions, such that the subsequent de-
velopment of ion correlations results in strong heating
[31, 32] to T ∼ 1K during the first few 100 ns [33–36],
and yields ionic Coulomb coupling parameters of order
unity. Ion temperatures are determined by fitting the
Doppler-broadened laser-induced- fluorescence spectrum,
while the ion density is determined from absorption mea-
surements of the plasma ions [37].

Due to the vast electron-ion temperature disparity,
electronic screening of ion-ion interactions is considerably
weaker than direct screening by the ions. For our condi-
tions, the electronic Debye length is about 5 to 10 times
larger than average particle distance a. The ionic com-
ponent can thus be viewed as a classical one-component
plasma, where the electrons provide a neutralizing back-
ground and electron-ion collisions play a negligible role.
The latter drive the relaxation dynamics of dense plasmas
[9–12, 14–22]. Here, the time scale for electron-ion relax-
ation greatly exceeds the duration of our measurement,
which allows us to exclusively study ion-ion relaxation
processes in the following.

To this end, we exploit the degeneracy of the Sr+

5s 2S1/2 ground state, i.e. the availability of two distinct
electronic spin states (see Fig. 1a). Initially, both spin
states are equally populated, but we can manipulate their
populations by applying two counter-propagating laser
pulses with identical frequencies, detuned by ∆pp/2π =
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FIG. 2: (color online). (a) Ion fluorescence spectra of a plasma
with density of ρ = 109cm−3 and temperature of T = 2.2K,
corresponding to a Coulomb coupling parameter of Γ = 1.2.
The circles show the measured spectra from the m = +1/2
states at different times t after optical pumping. The spectra
without optical pumping are shown by the triangles. They
match the familiar Voigt profile arising from the underlying
Maxwellian velocity distribution feq(vz) = f+(vz)+f−(vz) of
all plasma ions. The lines are fits of equation (3) to the experi-
mental spectra, which yields the velocity distributions shown
in (b). Panel (c) shows the corresponding average velocity
(dots), along with the result of our quantum-classical simu-
lations. The squares are obtained by calculating fluorescence
spectra from the simulated velocity distributions, which are
then analyzed just as the experimental spectra are. The line
shows the average velocity obtained directly from the simula-
tions. The good agreement between both approaches confirms
the accuracy of our experimental procedure for measuring the
ion velocity.

−20 MHz, opposite circular polarizations, and peak sat-
uration parameters s0 = 6 (see Fig. 1a). Due to the
Doppler effect, this optically pumps population between
the two spin states in a velocity-selective manner. Ions
with velocities around vz = ∆pp/k along the wave vec-
tor k of the σ− laser are transferred from m = +1/2
to m = −1/2 and vice versa around −vz. This pro-
duces skewed velocity distributions f±(vz) for each spin
state as shown in Fig. 1c. Note, that the state of the
plasma and in particular the total velocity distribution
f(vz) = f+(vz) + f−(vz) remains undisturbed and pre-
serves its Maxwellian form. Hence, the relaxation of f± is
driven by an equilibrium plasma with a well defined tem-
perature T . In this way, our experiments realize the orig-
inal Landau-Spitzer construction of tagged test charges
evolving in an equilibrium plasma background [2].

At an adjustable time after optical pumping, we ap-
ply a third, less intense probe beam (s0 = 1.5) with σ−

polarization and an adjustable detuning ∆pr and record
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laser-induced fluorescence spectra perpendicular to the
beam propagation (Fig. 1a). We shape the probe beam
into an ellipsoid that only interacts with a narrow cen-
tral sheet of the plasma, and, thus, produces an im-
age of a two-dimensional cut through the plasma cloud
as shown in Fig. 1a. We analyze fluorescence from a
small central area where the density is nearly constant
and the hydrodynamic expansion velocity [30] is negligi-
ble. The spectrum is given by a convolution of f+(vz)
and the Lorentzian profile of the probe transition, and
can, thus, be used to determine the ionic velocity dis-
tribution. Figure 2 shows a typical sequence of spectra
obtained at different times after optical pumping. Ini-
tially, one observes a considerable asymmetry with popu-
lation enhancement around ∆pr = −∆pp as expected. At
later times, the spectrum approaches the familiar Voigt
profile, indicating relaxation towards a Maxwellian ve-
locity distribution within a few 100 ns, which is close
to the inverse of the corresponding plasma frequency,
ω−1

p =
√
m/4πe2ρ ≈ 200 ns. The optical pumping and

collisional processes maintain a simple form of the ion
velocity distribution,

f
(fit)
+ (vz) =

αL(δ+, w) + 1

αL(δ+, w) + αL(δ−, w) + 2
feq(vz) , (3)

from which we calculate the corresponding fluorescence
spectrum and fit the measurements, using α and w as
free parameters. L(δ±, w) ∝ (w2 + δ2

±)−1 represents the
Lorentzian lineshape of the optical pumping transition,
with δ± = kvz ± ∆pp. Equation (3) follows from the
steady state of the underlying optical Bloch equations,
augmented by a simple Krook-type collision term [3], and
smoothly interpolates between the collisionless (α = 0)
and the strong-collision (α � 1) regime [38]. As shown
in Fig. 2a, our data is well described by the fitted velocity

distributions, f
(fit)
+ (vz) (Fig. 2b), from which we extract

the average ion velocity v̄z =
∫
vzf

(fit)
+ (vz)dvz (Fig. 2c).

We have also performed quantum-classical simulations
of the laser-driven plasma dynamics and subsequent re-
laxation in order to confirm our analysis procedure and
to extend the parameter range of our study. The calcu-
lations track the ion motion via classical molecular dy-
namics (MD) simulations of the plasma ions, interacting
by bare Coulomb interactions in a cubic simulation cell
with periodic boundary conditions. The internal states
of the ions are propagated according to the optical Bloch
equations [39] corresponding to the laser-driven 4-level
scheme shown in Fig.1b and described in [38]. This allows
to follow the time evolution of the internal-state density
matrix during optical pumping alongside the phase-space
trajectory of each individual ion. The quantum spin evo-
lution is coupled to the ion velocities via the Doppler
shift, such that this approach yields the fully correlated
internal and translational plasma dynamics. The good
agreement with our measurements (Fig. 2c) demonstrates
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FIG. 3: (color online). (a) Simulation results for the time
evolution of the average ion velocity v̄z (symbols), obtained
for a narrow perturbation of the initial velocity distribution

centered around v
(0)
z = vth =

√
kBT/m. Equations (4) and

(5), fitted to the data in the domain t < 3ωpt (lines), provide
an excellent description of the short time dynamics. Panel (b)

shows the extracted relaxation rate as a function of v
(0)
z . At

small Γ it displays a strong velocity dependence, which, how-
ever, weakens dramatically in the strongly coupled regime.
The black line shows a comparison to the weak-coupling LS
prediction (see equation (1)) for Γ = 0.005.

that this approach captures the essential physics of our
experiments. In addition, we used the simulated distri-
butions to generate theoretical spectra, which are then
analyzed just as the experimental spectra are. The ex-
cellent agreement between both results (Fig.2c) attests to
the accuracy of our experimental approach for extracting
the average ion velocity based on equation (3).

To determine the underlying relaxation rate, we model
the relaxation dynamics by a non-Markovian damping
term [40]

d

dt
v̄z(t) = −

∫ t

0

Mz(v(0)
z , t′) v̄z(t− t′) dt′ , (4)

where the stationary memory kernelMz(v
(0)
z , t) accounts

for retardation effects due to the strongly coupled na-

ture of the equilibrium plasma. Here, ±v(0)
z are the

velocities on resonance with the pumping lasers, which
show the strongest deviation from a Maxwellian. The
deviation is assumed to be well-localized in this deriva-
tion. The memory time vanishes in weakly coupled
plasmas, and Mz(vz, t) = 2γz(vz)δ(t). This yields fa-
miliar exponential relaxation with a damping constant
γz(vz) =

∫
dv⊥γ(v) feq(v⊥) that coincides with the LS

result, averaged over the corresponding Maxwellian of
the transverse velocity v⊥ = (vx, vy).

However, for the strong coupling conditions of our ex-
periments, forces experienced by particles show short-
time correlations. Following [41], these are properly ac-
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counted for with a simple Gaussian memory kernel

Mz(v(0)
z , t) =

2 γz(v
(0)
z )√

2πτ2
exp

(
− t2

2 τ2

)
. (5)

The corresponding memory time τ is connected to the
average ion acceleration [42] and can be obtained inde-
pendently from equilibrium simulations. For the time
scales relevant to our experiments (ωpt . 3), this simple
theory is well confirmed by our simulations (Fig. 3).

An additional complication may arise from the veloc-
ity dependence of the relaxation rate (cf. equation (1)),
which can make the dynamics of v̄z depend on the specific
form of f+(vz). To investigate this point we have per-
formed simulations where the initial state transfer is done
within a much narrower velocity range (∆vz = 0.05 vth)

centered around a velocity ±v(0)
z . Fitting eqs.(4) and

(5) to our simulation results for different v
(0)
z yields the

velocity-dependent rates shown in Fig. 3b. The veloc-
ity dependence weakens dramatically with increasing Γ
and nearly vanishes for our experimental conditions. In
fact, the optical pumping affects almost the entire ex-
tent of the initially Gaussian velocity distribution (Fig.
2b). Since γ(v) varies by less than 10% over this range,
we can apply equations (4) and (5) to our measurements
and identify the extracted relaxation rate as the aver-
age γ̄ ≈

∫
γ(v)feq(v)dv. As Fig. 4 demonstrates, this

simple approach provides an excellent description of our
measurements.

Figure 5 summarizes our main results, showing the re-
laxation rate γ̄ for a wide range of parameters. Upon
scaling the rate by the ionic plasma frequency ωp and ex-
pressing the plasma temperature and density in terms of
Γ, all data collapse onto a single universal curve. In the
weakly coupled regime, the numerical results approach
the familiar LS form

γ̄ = aΓ
3
2ωp ln Λ , Λ =

b√
3Γ3

, (6)
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FIG. 4: (color online). Measured time evolution of the aver-
age ion velocity v̄z for two different sets of plasma parameters,
(a) ρ = 3.1 · 109cm−3, T = 3.3K and (b) ρ = 4.4 · 109cm−3,
T = 1.7K, corresponding to Γ = 1.2 and Γ = 2.6, respectively.
The lines show a fit to the non-Markovian relaxation model,
equations (4) and (5), from which we extract the correspond-
ing relaxation rate γ̄ shown in Fig. 5.
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FIG. 5: (color online). Average relaxation rate as a function
of coupling strength Γ. The large circles show the experimen-
tal results for different combinations of plasma density and
temperature, within a range of 6×108cm−3 . ρ . 5×109cm−3

and 0.8K . T . 2.8K. Using dimensionless quantities (γ̄/ωp

and Γ), the data collapses onto a universal curve, which veri-
fies the expected Coulomb scaling and provides experimental
evidence that, in the strongly coupled regime, the velocity
dependence of the relaxation rate is negligible (see Fig.3b)
within our measurement accuracy. The thick solid line is ob-
tained from MD simulations for a wider range of Coulomb
coupling parameters. In the weak-coupling limit it approaches
the LS form, equation (6), shown by the thick dotted line.
The other lines show different proposed extensions [9–12] into

the strongly coupled regime, obtained by replacing Λ by Λ̃
in equation (6) according to the expressions given in the fig-

ure. The function E1(x) =
∫∞
x

e−t

t
dt denotes the exponential

integral.

of the relaxation rate, with a = 0.46 and b = 0.53. Well
into the strongly coupled regime, where equation (6) pre-
dicts negative relaxation rates, we find good agreement
between experimental and numerical results. A slight in-
crease with Γ is evident in the experimental results and
is well reproduced by our calculations. As Γ increases,
both approach the plasma frequency, which sets the typ-
ical time scale for ionic motion.

Figure 5 also includes recently proposed theoretical ex-
pressions based on effective Coulomb logarithms, ln Λ̃,
that remove the negativity of ln Λ and, thus, allow to
extend the LS-type formula (6) into the strongly cou-
pled regime. While the dashed curve was obtained from
MD simulations [10], the other three lines extend the
LS-type, binary-collision approach by using a screened-
Coulomb cross section [11] or by including hard colli-
sions [9, 14] with the maximum impact parameter set to
bmax = λD [12] and bmax =

√
λ2

D + a2 [9], respectively.
We note that the scaled rate will depend on the mass
ratio of the species considered, and previous theory has
focused on ion-electron thermalization [9–13] with an eye
towards dense plasma applications. Although our exper-
imental accuracy appears sufficient to discriminate be-
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tween different models, the additional mass-dependence,
presently, limits such comparisons to a qualitative level.
Perturbative corrections due to finite mass ratios have
been investigated recently [43]. Extensions of existing
models to equal-mass systems can now be subject to
stringent tests through measurements in ultracold neu-
tral plasmas.

The described pump-probe technique makes a whole
new class of experiments possible. Laser heating and
cooling [44] will greatly stretch the range of accessible
Coulomb coupling parameters and allow exploration of
the transition from an ideal to a correlated plasma, ex-
tending more deeply into the strongly coupled regime.
With improved time resolution, our approach will pro-
vide experimental access to velocity autocorrelations and
self-diffusion coefficients [45], which determine dynamic
structure factors and various transport processes.
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