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Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we construct a quantum
simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on
quantum links which realize continuous gauge symmetry with discrete quantum variables. At low
energies, quantum link models with staggered fermions emerge from a Hubbard-type model which
can be quantum simulated. This allows us to investigate string breaking as well as the real-time
evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.

Recently, the condensed matter and atomic physics
communities have mutually benefited from synergies
emerging from the quantum simulation of strongly cor-
related systems using atomic setups [1–4]. In particu-
lar, physically interesting quantum many-body systems,
which can not be solved with classical simulation meth-
ods, are becoming accessible to analog or digital quantum
simulation with cold atoms, molecules, and ions. In the
future, quantum simulators may also enable us to ad-
dress currently unsolvable problems in particle physics,
including the real-time evolution of the hot quark-gluon
plasma emerging from a heavy-ion collision or the deep
interior of neutron stars [5].

The challenge on the atomic physics side is to find
a physical implementation of gauge theories with cold
atoms, and to identify possible atomic setups represent-
ing dynamical gauge fields coupled to fermionic matter.
Below we provide a toolbox for a U(1) lattice gauge the-
ory (LGT) using atoms in optical lattices [1, 3]. Here
fermionic atoms represent matter fields. They hop be-
tween lattice sites and interact with dynamical gauge
fields on the links embodied by bosonic atoms. The LGT
to be implemented is a so-called quantum link model
(QLM)[6–8], where the fundamental gauge variables are
represented by quantum spins. QLMs extend the con-
cept of Wilson’s LGT [9]. In particle physics they provide
an alternative non-perturbative formulation of dynamical
Abelian and non-Abelian gauge field theories [8, 10, 11].
QLMs are also relevant in condensed matter contexts, like
spin liquids and frustrated systems [12–14]. Their Hamil-
tonian formulation provides a natural starting point for
quantum simulation protocols based on atomic gases in
optical lattices [15–19]. We will illustrate atomic quan-
tum simulation of an Abelian QLM in a 1D setup, demon-
strating both dynamical string breaking and the real-
time evolution after a quench, which are also relevant in
QCD. The quantum simulator discussed below makes the
corresponding real-time dynamics, which is exponentially
hard for classical simulations based on Wilson’s paradigm

[20], accessible to atomic experiments.

Cold quantum gases provide a unique experimental
platform to study many-body dynamics of isolated quan-
tum systems. In particular, cold atoms in optical lat-
tices realize Hubbard dynamics for both bosonic and
fermionic particles, where the single particle and inter-
action terms can be engineered by external fields. The
remarkable experimental progress is documented by the
quantitative determination of phase diagrams in strongly
interacting regimes, the study of quantum phase tran-
sitions, and non-equilibrium quench dynamics [21–25].
One of the most exciting recent developments are syn-
thetic gauge fields with atoms, which promises the re-
alization of strongly correlated many-body phases, such
as, e.g., the fractional quantum Hall effect with atoms
[26–31]. A fermion that is annihilated by ψy and recre-
ated by ψ†x at a neighboring site x, which propagates
in the background of a classical Abelian vector poten-
tial ~A gives rise to the hopping term ψ†xuxyψy with
uxy = exp(iϕxy). Hopping between the adjacent lat-

tice sites x and y accumulates the phase ϕxy =
∫ y
x
d~l · ~A.

The hopping term is invariant against U(1) gauge trans-

formations ~A′ = ~A − ~∇α[32, 33]. When a fermion hops
around a lattice plaquette 〈wxyz〉, it picks up a gauge
invariant magnetic flux phase exp(iΦ) = uwxuxyuyzuzw,

with Φ =
∫
d2 ~f · ~∇ × ~A. We emphasize that these syn-

thetic gauge fields are c-numbers mimicking an external
magnetic field for the (neutral) atoms.

Instead, here we are interested in dynamical gauge
fields as they arise in particle physics [34]. The corre-
sponding fundamental bosonic degrees of freedom Uxy
are no longer related to an underlying classical back-
ground field ~A, but represent quantum operators as-
sociated with the lattice links. The hopping of the
fermions is now mediated by the bosonic gauge field
via the term ψ†xUxyψy, which is invariant under local
changes of matter and gauge degrees of freedom U ′xy =

V †UxyV = exp(iαx)Uxy exp(−iαy), ψ′x = V †ψxV =



2

exp(iαx)ψx, V =
∏
x exp (iαxGx), and Gx = ψ†xψx −∑

i

(
Ex,x+î − Ex−î,x

)
. Here Ex,x+î is an electric field op-

erator associated with the link connecting x and y = x+î,
where î is a unit-vector in the i-direction. Gx is the
generator of gauge transformations (see [33] for a de-
tailed discussion). Gauge invariant physical states must
obey Gauss’ law, Gx|Ψ〉 = 0, which is the lattice vari-

ant of ~∇ · ~E = ρ = ψ†ψ. To ensure gauge covariance
of Uxy, it must obey [Exy, Uxy] = Uxy. The Hamil-
tonian representing the electric and magnetic field en-

ergy of a compact U(1) LGT, H = g2

2

∑
〈xy〉E

2
xy −

1
4g2

∑
〈wxyz〉 (UwxUxyUyzUzw + h.c.), is gauge invariant,

i.e. [H,Gx] = 0. In Wilson’s LGT, the link variables
Uxy = exp(iϕxy) ∈ U(1) are still complex phases, and
Exy = −i∂/∂ϕxy. Since Uxy is a continuous variable,
which implies an infinite-dimensional Hilbert space per
link, it is not clear how to implement it in ultra-cold
matter, where one usually deals with discrete degrees of
freedom in a finite-dimensional Hilbert space.

Quantum link models offer an attractive framework
for the quantum simulation of dynamical gauge fields
[8, 10, 11]. They extend the concept of a LGT to systems
of discrete quantum degrees of freedom with only a finite-
dimensional Hilbert space per link. In contrast to the
Wilson formulation, QLMs resemble a quantum rather
than a classical statistical mechanics problem. The re-
lation [Exy, Uxy] = Uxy is then realized by a quantum
link operator Uxy = S+

xy which is a raising operator for
the electric flux Exy = S3

xy associated with the link con-
necting neighboring lattice sites x and y. A local SU(2)

algebra is generated by a quantum spin ~Sxy with just
2S + 1 states per link [33]. We will consider quantum
links with S = 1

2 or 1. In the classical limit S → ∞
QLMs reduce to the Hamiltonian formulation [35, 36] of
Wilson’s LGT.

The implementation of quantum link models in ultra-
cold matter requires the realization of a gauge invariant
Hamiltonian accompanied by the corresponding Gauss
law. Here, we present a general procedure to obtain U(1)
QLMs including both gauge and matter fields. To illus-
trate our method, we focus on a simple example, a 1D
U(1) QLM coupled to so-called staggered fermions with
the Hamiltonian

H = −t
∑

x

[
ψ†xUx,x+1ψx+1 + h.c.

]

+ m
∑

x

(−1)xψ†xψx +
g2

2

∑

x

E2
x,x+1. (1)

Here t is the hopping parameter (see Fig. 1a), m is the
fermion mass, and g is the gauge coupling. In this case,
the gauge generator is given by G̃x = Gx+ 1

2 [(−1)x − 1].
Staggered fermions are analogous to spinless fermions at
half-filling in condensed matter physics. The correspond-
ing vacuum represents a filled Dirac sea of negative en-
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FIG. 1. [Color online] a) Correlated hop of a fermion as-
sisted by Ux,x+1 ≡ S+

x,x+1 consistent with Gauss’ law in a
QLM with spin S = 1. b) Realization of the process in a)
with bosonic and fermionic atoms in an optical super-lattice
(see text). c) Breaking of a string connecting a static Q̄Q pair:
from an unbroken string (top), via fermion hopping (middle),
to two mesons separated by vacuum (bottom). d) From a
parity-invariant staggered flux state (top), via fermion hop-
ping (middle), to the vacuum with spontaneous parity break-
ing.

ergy states. For S = 1, t = 0, and m > 0 the vac-
uum state has Ex,x+1 = 0 and ψ†xψx = 1

2 [1− (−1)x].
The corresponding vacuum energy of a system with L
sites is E0 = −mL/2. The above Hamiltonian resembles
the Schwinger model [37]. For S = 1 it shares the non-
perturbative phenomenon of string breaking by dynam-
ical qq̄ pair creation with QCD [38]. An external static
quark-anti-quark pair Q̄Q (with the Gauss law appro-
priately taken into account) is connected by a confining
electric flux string (Fig. 1c, top), which manifests itself
by a large value of the electric flux. For t = 0, the energy
of this state is Estring−E0 = g2(L− 1)/2, and the flux is
given by 〈∑xEx,x+1〉 = −L+ 1. At sufficiently large L,
the string’s potential energy is converted into kinetic en-
ergy by fermion hopping, which amounts to the creation
of a dynamical quark-anti-quark pair qq̄. In this process,
which is known as string breaking, an external static anti-
quark Q̄ pairs up with a dynamical quark to form a Q̄q
meson. For t = 0, the resulting two-meson state of Fig.
1c (bottom) has an energy Emesons − E0 = g2 + 2m and
a small flux 〈∑xEx,x+1〉 = −2. The energy difference
Estring−Emesons = g2(L− 3)/2− 2m = 0 determines the
length L = 4m/g2 + 3 at which the string breaks.

Another non-perturbative process of interest in parti-
cle physics is the real-time evolution after a quench. In
particular, the quark-gluon plasma created in a heavy-ion
collision quickly returns to the ordinary hadronic vac-
uum. This is accompanied by the spontaneous break-
down of the quark’s chiral symmetry. The dynamics af-
ter a quench can be quantum simulated by using the
S = 1

2 representation for the electric flux (which mim-
ics the Schwinger model at vacuum angle θ = π [37]).
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FIG. 2. [Color online] Schematic view of the optical super-
lattices for one fermionic and two bosonic species 1 and 2
(model I). a) Species 1 can hop between an even site x and the
odd site x− 1, while species 2 can hop between x and x+ 1.
b) Illustration of various contributions to the Hamiltonian.
Fermions and two-component bosons have on-site repulsions
U1F = U2F = U12 = 2U , while bosons of the same species
have U11 = U22 = 2U + g2/2 − t2B/U . The offsets of the
bosonic and fermionic super-lattices are 2U1 = 2U2 = 2U and
2UF = 2(U + m), respectively. If the fermion hops to the
left, it picks up the energy offset 2U from a boson of species
2 which simultaneously tunnels to the right.

In that case, like chiral symmetry in QCD, for m > 0
parity is spontaneously broken, at least for small t, for
more details see [33]. A quenched parity-invariant stag-
gered flux state, which evolves into the true vacuum with
spontaneous parity breaking, is schematically illustrated
in Fig. 1d. In this case, the electric flux represents an
order parameter for spontaneous parity breaking, which
is expected to perform coherent oscillations. This is sim-
ilar to the time evolution after a quench starting from a
disoriented chiral condensate in QCD [39].

The realization of an atomic LGT simulator requires:
(i) the identification of physical degrees of freedom to
represent fermionic particles and bosonic quantum link
variables; (ii) to impose the Gauss law in order to re-
move the gauge variant states; and (iii) to design the
desired dynamics in the gauge invariant subspace. Below
we develop a rather general atomic toolbox to implement
U(1) lattice gauge models coupled to matter fields based
on mixtures of cold fermionic and bosonic atoms in opti-
cal lattices. Within this toolbox, we consider two differ-
ent microscopic realizations in terms of Hubbard models,
model I and II. Below we present in some detail the con-
ceptually simpler model I (see Fig. 2), which assumes
two-component bosons representing gauge fields. Model
II, discussed in the [33], assumes one component bosons
with magnetic or electric dipolar interactions; it offers
better scalability and experimental feasibility. Our con-
cepts generalize immediately to experiments in 2D and
3D, and to fermions with spin [33].

(i) The spin S = 1
2 , 1, . . . representing the quantum

link can be realized with a fixed number N = 2S of
bosonic atoms in a double well potential with tunnel cou-
pling (Fig. 1b). An optical super-lattice [40, 41] (Fig. 2)
provides an array of double wells with different depths,
and a Mott insulator phase of bosons allows loading with
the desired number of atoms N . For two neighboring
sites x and x + 1, with bσx and bσx+1 denoting the bo-
son destruction operators in the corresponding wells, we
define a Schwinger representation for the quantum link

Ux,x+1 = bσ†x+1b
σ
x , Ex,x+1 =

1

2

(
bσ†x+1b

σ
x+1 − bσ†x bσx

)
. (2)

The electric flux is related to the population difference of
the two sites. Here the bosonic species index σ = 1, 2 dis-
tinguishes between links originating from even and odd
sites x. Eq. (2) requires that each boson can tunnel
only to one specific neighboring site, based on a term
hBx,x+1 = −tBbσ†x+1b

σ
x +h.c. The number of bosonic atoms

is conserved locally on each link. In [33] we discuss
model II with just a single bosonic species, by encod-
ing σ in the geometric location of the bosons to the left
or to the right of the site x. We now also add spinless
fermionic atoms at half-filling to our super-lattice setup,
which can hop between neighboring sites based on the
term hFx,x+1 = −tFψ†x+1ψx + h.c. (ii) Gauss law: Using

bσ†x b
σ
x + bσ†x+1b

σ
x+1 = 2S, the gauge generator reduces to

G̃x = nFx + n1x + n2x − 2S +
1

2
[(−1)x − 1] . (3)

Here nαx counts the atoms of type α = F, 1, 2. Up to an

x-dependent constant, G̃x thus counts the total number
of atoms at the site x. To impose the Gauss law, we
will consider interaction terms which can be rewritten in
the form UG̃2

x as the dominant term in the Hamiltonian,
so that all gauge variant states are removed from the
low-energy sector. This is reminiscent of the repulsive
Hubbard model for a Mott insulator [1]. In this sense,
the gauge invariant states (which obey nFx + n1x + n2x =
2S+ 1

2 [1− (−1)x]) can be viewed as “super-Mott” states.
(iii) It is well known that, for large on-site repulsion,
the Hubbard model reduces to the t-J model [42]. We
now induce the dynamics of a U(1) QLM in a similar
manner, by considering the 1D microscopic Hamiltonian
H̃ =

∑
x h

B
x,x+1+

∑
x h

F
x,x+1+m

∑
x(−1)xnFx +U

∑
x G̃

2
x.

Up to an additive constant, it can be expressed as

H̃ = −tB
∑

x odd

b1x
†
b1x+1 − tB

∑

x even

b2x
†
b2x+1 − tF

∑

x

ψ†xψx+1

+ h.c.+
∑

x,α,β

nαxUαβn
β
x +

∑

x,α

(−1)xUαn
α
x . (4)

The last two terms describe repulsive on-site interactions
as well as super-lattice offsets, and form the basic build-
ing block for the Gauss constraint U

∑
x G̃

2
x. The various

contributions to the Hamiltonian are illustrated in Fig.
2b. The QLM of Eq. (1) with t = tBtF /U emerges in
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FIG. 3. [Color online] a) Flux configuration in the ground
state of Eq.4 compared to the QLM for S = 1

2
obtained by

exact diagonalization of an L = 8 site system. The parame-
ters of the QLM (in units of tF = tB = 1) are t = 0.05, δF =
−0.05 (see [33]), and m = −0.2, 0, 0.2 (squares, crosses, and
circles). The corresponding microscopic parameters are U =
20 and m = −0.2, 0, 0.2 (dashed-dotted, dashed, and solid
lines). b) accuracy of the effective gauge invariance para-
meter G =

∑
x |〈Gx〉|/L in the microscopic realization as a

function of tF /U .c, d) Real-time evolution of the total electric
flux E =

∑
xEx,x+1 obtained by exact diagonalization of the

QLM with L = 16. c) For S = 1 (solid line) string breaking is
illustrated, starting from the initial state at the top of Fig. 1c,
and approaching the corresponding vacuum expectation value
(dashed-dotted line) of E =

∑
xEx,x+1 (g2 =

√
2t > 0, m =

0, δF = −
√

2t; critical breaking length Lc = 0 when t = 0).
d) For S = 1

2
we show the evolution after a quench, starting

from the initial state at the top of Fig. 1d. The flux order
parameter performs coherent oscillations whose period and
strength strongly depends on m (m/t = 0.6(0.9) for dashed
(thick) line, δF = 10 t).

second order perturbation theory, if one tunes the para-
meters to the values listed in Fig. 2b. The offsets Uα give
rise to an alternating super-lattice for both the fermions
and the bosons. In analogy to super-exchange interac-
tions [41], energy conservation enforces a correlated hop
of the fermion with the spin-flip on the link, thus realizing
the term −tψ†xUx,x+1ψx+1. This is the key ingredient for
the coupling of fermions and quantum links. Addition-

ally, a gauge invariant term δF
∑
x ψ
†
xψx

[
1− ψ†x+1ψx+1

]

is also generated [33]. The reduction of the microscopic
model of Eq. (4) to the QLM of Eq. (1) has been verified
both at the few- and many-body level, is schematically
illustrated in Fig. 3a-b and extensively discussed in [33].

We have performed exact diagonalizations on small
system sizes to quantitatively show the physical phe-
nomena of string breaking and the dynamics after a
quench which can be observed in an experiment. The
main results are presented in Fig. 3c-d. For S = 1,
we evolve a string state initially prepared as in Fig. 1c
under Hamiltonian parameters such that the separation
between charge and anti-charge is larger than the char-

acteristic scale for string breaking L = 4m/g2 + 3. In-
deed, the large negative electric flux initially stored in
the string quickly approaches its vacuum value, illustrat-
ing the string breaking mechanism. For S = 1

2 , Fig. 3d
also shows the time evolution after a quench, starting
from the parity-invariant state at the top of Fig. 1d.
In fact, the electric flux, which is an order parameter
for spontaneous parity breaking, displays coherent os-
cillations, reminiscent of a disoriented chiral condensate
in QCD [39]. A general experimental implementation,
which will require three basic steps (preparation of an
initial gauge invariant state, evolution via quantum link
dynamics, and measurement of relevant physical observ-
ables), is discussed in the supplementary materia[33].

In the present work, we have proposed a quan-
tum simulator of lattice gauge theories, where bosonic
gauge fields are coupled to fermionic matter, allowing
demonstration experiments for phenomena such as time-
dependent string breaking and the dynamics after a
quench. While the basic elements behind our model have
been demonstrated individually in the laboratory, the
combination of these tools and the extension to higher di-
mensions remain a challenge to be tackled in future gen-
erations of optical lattice experiments. While building a
QCD quantum simulator to address questions related to
non-zero baryon density and real-time evolution remains
a long term goal, we see no fundamental obstacles on
the atomic physics side, but rather a long list of chal-
lenges such as incorporation of multi-component quark
fields and non-Abelian plaquette terms in higher dimen-
sions. A realistic pathway will be the investigation of
increasingly complex (quantum link) models in an inter-
play between theory and experiment, with the short term
goals of extending the present study to higher dimensions
and in particular non-Abelian gauge field models.
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