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Using a numerical renormalization group based on exploiting an underlying exactly solvable non-
relativistic theory, we study the out-of-equilibrium dynamics of a 1D Bose gas (as described by the
Lieb-Liniger model) released from a parabolic trap. Our method allows us to track the post-quench
dynamics of the gas all the way to infinite time. We also exhibit a general construction, applicable
to all integrable models, of the thermodynamic ensemble that has been suggested to govern this
dynamics, the generalized Gibbs ensemble. We compare the predictions of equilibration from this
ensemble against the long time dynamics observed using our method.
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Understanding non-equilibrium quantum quench be-
havior in low-dimensional systems is a difficult theoret-
ical challenge. Because one is initializing the system in
a state that is not an eigenstate, this behavior is deter-
mined not merely by the system’s ground state (or a small
number of excited states), but rather by some coherent
sum of a large number of eigenstates. If one wants to ex-
plore the emergence of a resulting steady state, the time
evolution of this coherent sum must then be tracked over
long periods of time. This problem confronts theorists
who wish to understand dynamics in perturbed quantum
gases [1, 2], ultrafast phenomena in superconductors [3],
and questions of thermalization in integrable systems [4].

This last set of questions arise because of the surprising
experimental finding that a perturbed one-dimensional
Bose gas retains memory of its initial non-equilibrium
state over long periods of time [1] and does not appear
to relax to a state of thermodynamic equilibrium. To un-
derstand this, it was proposed [4] that equilibriation does
occur but not as described by a grand canonical ensem-
ble (GCE). Instead the ensemble describing equilibria-
tion needs to take into account the additional, non-trivial
conserved quantities that, at least according to the the-
oretical minimal model of the gas (the Lieb-Liniger (LL)
model [5]), are present in the system. This new ensemble
has been dubbed the generalized Gibbs ensemble (GGE).
The GGE takes as the density matrix

ρ̂GGE = Z−1 exp(−
∑
i

βiQi) (1)

where the Qi form an independent, complete sequence of
conserved quantities in the system and βi correspond to a
set of generalized (inverse) temperatures. Computation
of this density matrix is non-trivial and has only been
successfully accomplished in certain special limits. Most
of these limits are in models where interactions (though
not necessarily correlation functions) correspond to a free
model (the hard core limit of the interacting Bose gas
[4], quadratic Hamiltonians [6], Luttinger liquids [7], the
sine-Gordon model at the free-fermion point and in the

semi-classical limit [8], and the quantum Ising model in
the absence of a longitudinal field [9, 10]). A notable
exception was the study of Fioretto and Mussardo [11]
where it was possible to study quenches in general in-
teracting integrable models but with the restriction to a
very special set of quench protocols.

It is against this backdrop that we present a general
methodology able to study non-equilibrium behavior and
quench dynamics of low-dimensional interacting models,
both integrable and non-integrable. This method is pred-
icated on a numerical renormalization group (NRG) able
to study models which can be represented as perturbed
integrable and conformal field theories (CFT) [12]:

H = HIntegrable/CFT + Vperturbation. (2)

The LL model in a trapping potential takes this form.
We believe that this methodology is a valuable addition
to other general methodologies used to study dynamics
in low-dimensional systems such as the time-dependent
density matrix renormalization group [13–17]. At least
for a subset of quenches, where we quench into an inte-
grable system (say by turning off the trapping potential
in a LL system), we can track the dynamics for all times.

Concomitant with the introduction of this tool to study
quench dynamics, we present a general methodology to
compute the density matrix of the GGE using informa-
tion arising from the application of the NRG. We show
how one can write down a simple set of equations govern-
ing the GGE and how the entire infinite set of generalized
temperatures, {βi}∞i=1 can be readily determined.

The specific example we consider is the LL model per-
turbed by a one-body parabolic trap V (x) = mω2x2/2,

H = − ~2

2m

N∑
j=1

∂2

∂x2j
+ 2c

∑
〈i,j〉

δ(xi − xj) +
∑
i

V (xi), (3)

(we will work in units where 2m = ~ = 1). In running
the NRG, we use the basis of eigenstates of the LL model
and their matrix elements with respect to the trapping
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potential. Both the description of the states and the com-
putation of matrix elements in the LL model are much
more complicated than the examples of relativistic field
theories where the NRG has been applied previously. The
states in the LL model consist of N strongly interacting
particles and not few-particle excitations above the true
vacuum state, while the matrix elements do not see a
chiral factorization as in a relativistic gapless theory but
are N-dimensional determinants [18]. To tackle this, we
took recourse to a highly optimized set of routines known
as ABACUS [19] which solves and evaluates all equations
needed to characterize both the necessary eigenstates and
their matrix elements. This package has been shown to
be able to successfully compute dynamical response func-
tions for the LL model [19].

We first use the NRG to extract the ground state of the
LL model in a trap [20]. The NRG produces the ground
state of the gas, |ψ〉GS , as a linear combination of exact
eigenstates, |s〉, of the LL model: |ψ〉GS =

∑
s cs|s〉. In

order to accurately describe the ground state in the NRG
procedure we typically consider on the order of 104 −
105 states. We then consider a sudden release of the
trap, that is we will study the gas where we quench into
an integrable model. For these types of quenches our
methodology gives us the ability to study the evolution
of the gas for arbitrary times. Each state, |s〉, appearing
in the ground state is characterized by a set of N (one
for each particle) rapidities (quasi-momenta) {λn}Nn=1.
These rapidities are solutions to the Bethe equations,

eiλnL =
∏
m6=n

λn − λm + ic

λn − λm − ic
, (4)

and can be readily obtained to arbitrary accuracy. With
the NRG we can compute the coefficients cs with rea-
sonably high accuracy [20]. Time evolution under the
post-quench Hamiltonian (the unperturbed LL model) is
extremely simple. If Es is the energy of state |s〉, the time
evolution is described by |ψ(t)〉GS =

∑
s cse

−iEst|s〉. Be-
cause each state’s energy, Es, is given in terms of the λn’s
as
∑
n λ

2
n, we can compute the phases appearing in the

above sum to arbitrary accuracy for arbitrary time.
To characterize the evolution of the gas in the long time

limit we compute the momentum distribution function
(MDF) nk = 〈ψ†kψk〉 in the diagonal ensemble (DE). An
observable O†O in this ensemble is simply given by

〈O†O〉DE ≡
∑
s

|cs|2〈s|O†O|s〉. (5)

To compute this correlation function we insert a resolu-
tion of the identity betweenO† andO and use a specially-
designed version of ABACUS for excited states to com-
pute all of the necessary matrix elements [20].

In Fig. 1 we plot the MDF in the DE of the gas post-
release for two values of c (c = 10 and c = 7200) and
for a variety of system sizes, with ωL fixed and keeping
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FIG. 1: The MDF in the DE of the gas after release from a
trap for c = 10 (top) and c = 7200 (bottom). Shown are the
gases at (N = L = 14, ω = 0.64), (N = L = 28, ω = 0.32),
and (N = L = 56, ω = 0.16). Error bars are given for the
N = L = 56 data alone and are estimated from the speed
of convergence of the NRG (see [20]) – we believe the N =
L = 14, 28 data is completely converged. The MDF of the
untrapped gas (N = L = 56) is shown for comparison as is
the analytic expression available for the Tonks-Girardeau gas
c = ∞ from Ref. [21].

N = L. For comparison we also plot the MDF of the gas
in its ground state.

We see, as expected, that the MDF of the gas is per-
turbed from that of the ground state at low momenta
but remains unchanged from the ground state MDF at
higher momenta. The relative insensitivity to different
values of N = L, ω is consistent with a perturbative (in
ω) computation of the MDF in the DE at c = ∞ which

shows n(k)DE = n(k)GS+(ωL2π )4(NL )1/2m
2
√
2πB0

8v2F k
5/2 +O(ω8).

Here n(k)GS is the MDF of the ground state, the con-
stant B0 ≈ 0.5124 [22], and vF is the velocity of the gas.
The scaling with N,L, and ω indicated by this expres-
sion implies that variations in n(k)DE between different
system sizes in Fig. 1 are due to finite size corrections
which are small (on the order of the symbol size). As an
important check of our results, the high momenta tails
of the MDF’s at c = 7200 behave as the predicted k−4

[21, 23, 24].
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While the diagonal ensemble tells us what the final
steady state of the gas is after its release, a question
of primary interest is whether the steady state can be
associated with some ensemble. It has been postulated
[4] that for a quench into an integrable system the correct
ensemble to use is the GGE ensemble in Eqn. 1. The Qi’s
are here non-trivial polynomials in the field operators
(and their derivatives) [25]. The action of the Qi’s on
the states, |s〉, is straightforward. With each state, |s〉,
characterized by a set ofN rapidities, λi, the action of the
Qi upon |s〉 is Qi|s;λ1, · · · , λN 〉 =

∑
j λ

i
j |s;λ1, · · · , λN 〉,

that is to say, Qi acts on the state like an i-th power
sum. This shows that the Qi’s are both a complete and
independent set of charges inasmuch as the polynomials
form a complete and independent basis in the space of
single variable functions.

To compute ρ̂GGE the most straightforward path is
to compute 〈Qi〉 at t = 0 and insist that the set
of βi’s is such that Tr(ρ̂GGEQi) gives the same an-
swer. In the case of the hard core limit this is read-
ily doable as the Qi’s can be written in terms of a
more amenable basis, the momentum occupation num-
bers: Qi =

∑
λ λ

inλ, where nλ tells you whether there
is a particle with rapidity of the form λ = 2πm/L for
m ∈ Z. In this basis of charges, 〈nλ〉GGE simplifies to
Tr(exp(−βλnλ)nλ)/Tr exp(−βλnλ), i.e. for such expec-
tation values the ensemble factorizes, and βλ is readily
computed. This simplification, however, does not ex-
ist away from the hard core limit and we are instead
left with a complicated non-linear minimization problem
which on the face of it does not obviously have a solu-
tion. We now show that it does and that the βi’s can
be computed readily. We do so through a (generalized)
thermodynamic Bethe ansatz [26].

Because the action of the charges Qi on the states, |s〉,
are given simply in terms of the rapidities, λi, identifying
the state, to ask that 〈Qi〉t=0 = 〈Qi〉GGE amounts to
asking whether there is a set of λ’s, {λ̃j}Nj=1, such that

〈Qi〉t=0 =
∑
j

λ̃ij , i = 1, 2, · · · .

There is in fact such a set. We can moreover determine its
rapidity distribution, which we will call ρGGE(λ), directly
from |ψ〉GS . To each state, |s;λs1, · · · , λsN 〉, we associate
a distribution, ρs(λ), governing the λ’s of that particular
state: ρs(λ) = 1

L

∑
i δ(λ − λsi). Then ρGGE(λ) is the

weighted sum of the ρs(λ)’s:

ρGGE(λ) =
∑
s

|cs|2ρs(λ).

In particular
∫
dλρGGE(λ)λi = L〈Qi〉t=0.

ρGGE contains, implicitly, all the information to char-
acterize the action of ρ̂GGE on a eigenstate of the LL
model [26]. A distribution of λ’s must be consistent with
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FIG. 2: ε0(λ) and ρ(λ) for both the GGE and GCE ensembles
for a gas with N = L = 56, c = 7200, and a prequench trap
strength, ω = 0.256. For the GCE ensemble the effective tem-
perature is T = 1.54. The quantities plotted are symmetric
about λ = 0.

the Bethe equations (Eqn. 4). In the continuum limit,
these equations can be rewritten as [5, 27]

ρGGE(λ) + ρhGGE(λ) =
1

2π
+

∫
dλ′

2π
K(λ− λ′)ρGGE(λ),

(6)
where ρhGGE(λ) is the density of holes in the λ-
distribution and K(λ) = 2c/(c2 + λ2). Now the GGE
is derived by the same principles as the grand canoni-
cal ensemble: namely entropy is maximized subject to
the constraints of fixed conserved charges (energy for
the grand canonical ensemble, all the charges, Qi, for
the GGE). Thus associated with GGE is a generalized
free energy FGGE =

∫
dλρGGE(λ)ε0−GGE(λ)− S, where

ε0−GGE(λ) ≡
∑
i βiλ

i is a generalized energy. It corre-
sponds to the action of ρ̂GGE on a state |s;λ1, · · · , λN 〉:

ρ̂GGE |s;λ1, · · · , λN 〉 =
e−

∑
i ε0−GGE(λi)

Z
|s;λ1, · · · , λN 〉.

(7)
In particular knowing ε0−GGE then allows us to compute
general expectation values in the GGE. While ε0−GGE
differs from its form in the grand canonical ensemble,
S is the standard entropy [27] of a system with a given
distribution of particles, ρGGE , and holes, ρhGGE :

S =

∫
dλ

[
(ρGGE + ρhGGE) log(ρGGE + ρhGGE)

−ρGGE log ρGGE − ρhGGE log ρhGGE

]
. (8)

We now show that we can express ε0−GGE in terms of
ρGGE that we derived from |ψ〉GS .

If we minimize the generalized free energy we arrive at
a constraint between the particle and hole distributions
and ε0−GGE :

ε(λ)=ε0−GGE(λ)−
∫
dλ′

2π
K(λ−λ′) log(1 + e−ε(λ)), (9)



4

10
−1

10
0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

k/k
F

k 
n(

k)

 

 

N = 56, c = 10

ω = 0.16

gs
DE
GGE
GCE

10
−1

10
0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

k/k
F

k 
n(

k)

 

 

N = 56, c = 7200

ω = 0.16

gs
DE
GGE
GCE

FIG. 3: The MDF (for N = L = 56) in the GCE and GGE
for the gas after release from a trap of strength ω = 0.16 for
c = 10 (top) and c = 7200 (bottom). We again show the
MDF of the untrapped gas for comparison (blue stars).

where ε = log(ρhGGE/ρGGE). Thus to determine ε0−GGE
we take our knowledge of ρGGE(λ) obtained from |ψ〉GS ,
use Eqn. (6) to determine ρhGGE which then gives us ε(λ).
From Eqn. (9), we then can fix ε0−GGE .

Following this procedure we plot in Fig. 2 ρGGE and
ε0−GGE for the gas in the hard core limit. For comparison
we plot what these quantities would be if instead of a gen-
eralized Gibbs ensemble, the thermodynamics was gov-
erned by the grand canonical ensemble. (In this case we
use the standard thermodynamic Bethe ansatz equations
[27] to determine what ρGCE and ε0−GCE = β(λ2 − µ)
need to be, i.e. what the effective temperature needs to
be, if they are to reproduce the correct density and av-
erage energy of the system GS〈ψ|H|ψ〉GS .) We see that
both ρGGE and ε0−GGE have considerably more struc-
ture than that of their grand canonical counterparts.

We now use this ability to compute ε0−GGE(λ), to
compute various expectation values of observables in the
GGE. In Fig. 3 we plot the MDF as computed in the DE
and in both the GGE and GCE. The error estimate is
computed similarly as in Fig. 1 (see [20] for details). For
the data at hand, we see that for low momenta the two
ensemble averages, GGE and GCE, disagree with the DE.

However the GGE provides a considerably better match
to the DE than does the ordinary thermal ensemble GCE.
From the finite size comparison (see Fig. 3 of [20]), it can
be argued (although not conclusively) that at small but
finite k, this difference will vanish with increasing system
size.

The disagreement between ensembles in the data is
not entirely surprising. The logic of the GGE is such
that it is expected to describe correlations that are local
in space (and that involve a distance scale significantly
smaller than the system size). We thus do not expect the
correlations at k ∼ 1/L to be particularly well described
by the GGE. However there is the possibility that the
differences between ensembles will remain at finite k >
1/L even in the infinite volume limit. In recent work
[28] the entropy associated with the DE was shown to
be considerably smaller than that of the GGE implying
that the DE is more tightly constrained than the GGE,
i.e. the GGE seems to be missing correlations. It would
be interesting to understand if this missing entropy is
solely associated with non-local correlations.

In conclusion, we have demonstrated how an NRG
based on exploiting the integrability of the LL model
can be used to study the time-dependent evolution af-
ter a quantum quench where a 1D gas is released from a
parabolic trap. We have also demonstrated how to use
the information arising from the NRG to construct the
corresponding GGE which has been suggested as a possi-
bility for governing the post-quench dynamics. While we
have focused on the LL model, this methodology is ap-
plicable to any non-relativistic integrable theory of which
the Heisenberg and XXZ spin chains are two prominent
examples.
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