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Spin gradient driven light amplification in a quantum plasma
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It is shown that the gradient “free-energy” contained in equilibrium spin vorticity can cause
electromagnetic modes, in particular the light wave, to go unstable in a spin quantum plasma
of mobile electrons embedded in a neutralizing ion background. For densities characteristic of
both the solid state and very high density astrophysical systems, the growth rates are sufficiently
high to overcome the expected collisional damping. Preliminary results suggest a powerful spin-
inhomogeneity driven mechanism for stimulating light amplification.
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In this letter, we demonstrate that an inhomogeneous
macroscopic spin field can induce instabilities in a va-
riety of electromagnetic modes sustained by a spinning
quantum plasma. In particular, we will show that the
light wave branch of the standard plasma dispersion (in
classical plasmas) gets profoundly affected by quantum
modifications. The light wave is, generally, very stable,
both in classical and in quantum plasmas, and it man-
ages to stay so even in the presence of a broad set of spin
inhomogeneities.
What is remarkable, however, is that there does seem

to exist a class of inhomogeneities on which the light
waves can feed, and grow by tapping the ambient free
energy. Such inhomogeneities carry a non-vanishing
spin/quantum vorticty. Constructed from the macro-
scopic spin field S, the spin vorticity

Ωq =
∇Si ×∇Sj

Sk
(1)

was recently introduced in the quantum plasma litera-
ture [1]. In Eq.(1), i, j, k are a cyclic permutation of the
spin vector components; the spin vector has a unit mod-
ulus, S2

1 + S2

2 + S2

3 = 1, with the concomitant constraint
S1∇S1 + S2∇S2 + S3∇S3 = 0. Note that, to insure a
nonzero Ωq, all components of the spin vector must be
nonzero, and the system must have a variation in at least
two directions.
The vortical formalism, developed in Ref. [1], is deriv-

able from, and equivalent to previous formalisms [2, 3].
Its structure, however, leads to a “simpler” represen-
tation of the spin-plasma equations, allowing easier in-
terpretation, classification, and manipulations pertaining
to all incompressible motions. The identification of the
quantum vorticity Ωq brings in conceptual depth as well
as an enhanced capability to explore the rich physical
content injected into quantum plasmas by a dynamical
spin-field.
The subject of spin-created new complex possibilities

[2, 3] in the linear as well as nonlinear waves supported
by quantum plasmas has received considerable attention
(see, for example, Refs. [4–15] and references therein).
Much effort has been put into finding new instabilities
driven by spin in low-frequency and electrostatic modes
in the magnetized plasma regime [14, 16–19]. However,

in most calculations (with a few exceptions [20–22]), spin
is not considered as a dynamical variable. Instead, only
its thermodynamical ensemble properties were used for
the definition of the magnetization current.
The controlling role of quantum vorticity in the possi-

ble instability of the electromagnetic modes is, naturally,
revealed in the recently introduced vortical formulation
(in close analogy to the vortex dynamics of ideal fluids)
of spinning quantum plasmas. The plasma dynamics, in
this formulation [1], is contained in three vector equa-
tions: The standard spin evolution equation

(

∂

∂t
+ v · ∇

)

S =
2µ

h̄
S ×

(

B +
h̄c

2q
∇2S

)

, (2)

(where v is the velocity and B is the magnetic field), the
Maxwell law

∇×B =
4π

c
qnv + 4πµn∇× S +

1

c

∂E

∂t
, (3)

(where E is the electric field), and the recently derived
unified equation for the Grand generalized vorticity (GV)

∂Ω−

∂t
= ∇× (v ×Ω−) . (4)

The GV, a combination of the canonical (Ωc = B +
(mc/q)∇ × v) and quantum (Ωq) vorticities, is defined
as

Ω− = Ωc −
h̄c

2q
Ωq . (5)

In the preceding equations, q (m) is the particle charge
(mass), µ = qh̄/(2mc) is the elementary magnetic mo-
ment, h̄ is the reduced Planck constant, and c is the
speed of light. The plasma has been assumed to be in-
compressible (the fluid density n is constant).
It is, perhaps, obvious that the construction of Ω−,

obeying the basic vortex equation (4), was motivated by
a desire to eliminate the quantum force (that destroys the
canonical vortex structure) in the evolution equation of
the canonical Ωc. Evidently, (4) insures the conservation
of the associated helicity h− =

∫

d3x Ω− ·
(

∇−1 ×Ω−

)

.
We begin our investigation of the linear wave propaga-

tion (in a flow-free plasma without any external magnetic
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field) by expanding the general perturbations in terms of
Fourier modes: Q

1
= (Qxêx +Qy êy +Qz êz) exp[i(k ·x−

ωt)], where ω and k are, respectively, the wave frequency
and the wave vector, and Q

1
is the generic linear pertur-

bation: the magnetic (B1), the velocity (v1), and the spin
(Σ). Throughout this paper, the subindex 1 (0) labels
the perturbed (equilibrium) quantities (in order to avoid
ambiguity of notation, we label the spin perturbation as
Σ instead of S1).
Because the plasma will have equilibrium spin gra-

dients (for a nonzero quantum vorticity), we must re-
sort to a local analysis for which the usual requirement
is that the scale length L of the spin inhomogeneity
must be much larger than the wavelength k−1 (k is the
modulus of the wave vector) of the mode. Specifically,
|∇S0|/S0 ∼ 1/L ≪ k ∼ |∇Σ|/|Σ|, i.e., 1/kL ∼ ǫ ≪ 1.
Thus, ǫ measures the strength of the spin gradients. We
will find that it is the equilibrium quantum vorticity,
Ωq0 = ∇S01 ×∇S02/S03 (of order ǫ2), that is responsi-
ble for creating imaginary parts in the dispersion relation
(S0j are the components of S0).
One of the equilibrium conditions requires that B0 =

aS0 + ∇ϕ, and, for simplicity, we choose ϕ = 0. An
equilibrium with a spin field, then, must necessarily have
an intrinsic equilibrium magnetic field (even when the
external field is zero). Keeping this fact in mind, the
normalized perturbed equations, written in terms of just
one characteristic parameter a = h̄ωp/(2mc2), spell out
as

−iωΣ+ (v1 · ∇)S0 = S0 ×B1 − a(1 +K2)S0 ×Σ

+aΣ×∇2S0 , (6)

B1 + iK × v1 − aΩq1 = − a

ω
v1(S0 −Ωq0) ·K

−ai

ω
(v1 · ∇)S0 , (7)

−FB1 = iK × v1 − aK(K ·Σ)

+aK2
Σ , (8)

where F = ω2 −K2, K = kc/ωp is the normalized wave
number, and all frequencies and length scales are normal-
ized to ωp and λs ≡ c/ωp, respectively (ωp is the plasma
frequency). The velocity is normalized to the speed of
light, and the magnetic field is normalized to h̄ωp/(2µ).
Note the appearance of a slew of terms proportional to
∇S0 reflecting the spatial dependence of the spin field.
We have kept terms to order ǫ2 only.

Dotting (6) with S0 and (7) with K, we obtain the two
constraints S0 · [(v1 ·∇)S0] = 0 and K · [(v1 ·∇)S0] = 0.
Whereas the former condition is satisfied trivially (recall
that |S0 · S0| = 1), the only physically meaningful way
to satisfy the latter is to assume K · S0 = 0. However,
since S0 varies in space, it is clear that this condition can
only be fulfilled locally.

The linearized mode equations (6)-(8), after being de-

composed in a convenient basis (es ≡ S0, k̂ ≡ K/K and

es× k̂), are manipulated (to O(ǫ2)) to obtain the general
dispersion relation

AD −BC = 0, (9)

where

A = −
(

ω(1− F )− a

K
F k̂ · (∇× es)− aK k̂ · (∇× es)

)

+ i
akz
S3

(es × k̂ ·Ωq0) ,

B = a

(

(1− F )(1 +K2 + es · ∇2es)−K2 − a

ωK
(ω2 + FK2)k̂ · (∇× es) +

(es × k̂)z
S3

es × k̂ ·Ωq0

)

,

C =
ω

K
F k̂ · (∇× es)− a(1 +K2 + es · ∇2es) ,

D = ω − a

K
(ω2 + FK2)k̂ · (∇× es) ,

with kz = ez · k̂, (es× k̂)z = ez · (es× k̂). Note the strik-
ing fact that, though there are many gradient-dependent
terms, the only imaginary term in (9) is proportional to
the equilibrium spin vorticity Ωq0. The dispersion rela-

tion for the light wave branch allows an analytic approx-
imation,

ω ≈ ω∗ −
a(1 + 2K2)

2ω∗K
√
1 +K2

k̂ · (∇× es) + iΓ , (10)

where ω∗ =
√

1 +K2 + a2K2/(1− a2(1 +K2)), the
dominant part of the mode frequency, is mostly classi-
cal with modifications from quantum effects through a.
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The principal result of this paper, the growth rate,

Γ = − akz

2ω∗S3

√
1 +K2

(es × k̂) ·Ωq0 , (11)

determined by the zeroth order quantum vorticity, how-
ever, has no classical analogue.

To explore the nature of these modes in detail, the
dispersion relation (9) must be solved numerically. For
simplicity, we assume the x (y) component of the equilib-
rium spin S1 (S2) to vary only in y (x) direction so that
the equilibrium quantum vorticity Ωq0 lies in the −z di-
rection (note that this means that Γ > 0). Then, for fixed
S3, the imaginary part reaches its maximum at maximum
kz = (es × k̂)z . The maximization condition, when com-
bined with the fact that the vector S has a unit modulus,
enforces k2z = 1

2
(1 − S2

3
), and leads to k2z/S

2

3
= 1 for an

isotropic spin distribution (S2

1 = S2

2 = S2

3 = 1/3). An
anisotropic spin distribution with S2

3
< 1/3 would imply

k2z/S
2

3 > 1 . However, there is no reason to assume the
spin distribution to be very strongly anisotropic. These
relations simplify Γ and subsequent calculations.
The dispersion relation admits five different modes,

two of which are the positive and the negative light waves.
The other three, all new quantum branches (with possi-
bly unstable roots), though interesting in their own right,
will be dealt with in a follow-up paper.

The primary focus of this paper is the light wave.
As indicated in the introduction, both branches of the
light wave have a purely positive growth rate, peaking
for small K. We display the pertinent real and imagi-
nary parts (for the latter, both analytic and numerical
results) in Figs. 1 and 2. We have chosen two distinct
density regimes to study: the comparatively lower den-
sity, n ≈ 1023cm−3, typical to the electron gas in metals
(to be called a solid state plasma), and the higher density,
n ≈ 1030cm−3, corresponding to the degenerate electron
gas in a white dwarf (compact star). In a neutron star,
the electron densities (about 1% of the neutron density)
can go as high as 1034 − 1035cm−3. The high-density
systems will be called astrophysical plasmas.
The real part of the frequency, in both cases, is readily

understandable; the mode tends to be more and more
light like (F = 0, ω = cK) as K increases. The principal
interest, however, is in the imaginary part of the mode
(normalized to the electron plasma frequency). This is
in the range of ∼ 2.4 × 10−7 for the solid state relevant
plasmas (see Fig. 1), and of ∼ 8 × 10−4 in astrophysical
scenarios (Fig. 2). Note that the analytic approximation
is almost indistinguishable from the numerical result.

We must, of course, examine if these growth rates are
high enough to compete with other plasma processes,
i.e., if they are, for example, large enough to overcome
damping by collisions. In order to estimate the effect of
collisions, we resort to the literature on collisional quan-
tum plasmas [23]. The normalized collision frequency
(to the plasma frequency ωp), relevant to the regime of
solid state plasmas (density around 1023cm−3, tempera-
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FIG. 1: Real and imaginary parts of the electromagnetic
modes for density n = 1023cm−3 (solid state plasmas), a ≈

10−5 and ǫ = 0.1. (a) The real part of the dispersion rela-
tion (9). It is almost unchanged in the range shown. (b) The
imaginary part of the dispersion relation (9) (blue line) and
analytical approximation (11) (in triangles). Note the good
agreement.
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FIG. 2: Real and imaginary parts of the electromagnetic
modes for density n = 1030cm−3 (astrophysical plasmas),
a ≈ 4× 10−2 and ǫ = 0.1. (a) The real part of the dispersion
relation (9). It is almost unchanged in the range shown. (b)
The imaginary part of the dispersion relation (9) (blue line)
and analytical approximation (11) (in triangles).

ture T = 30K) has been estimated to be

νee
ωp

=
1

g
1/2
Q

(

T

TF

)2

≃ 3.3× 10−8, (12)

where TF (EF ) is the Fermi temperature (energy) and
gQ ≡ Eint/EF ∼ (h̄ωp/EF )

2 is the quantum coupling
parameter that measures the interaction energy Eint =
4πe2n1/3 versus the average kinetic energy.
For solid state quantum plasmas, a comparison of the

estimate (12) with the growth rates (also normalized
to ωp) reveals that, in the low-K range, the growth
rates are greater than the collision frequency, and in the
intermediate-K range, the two become comparable. One
could conclude that, at least for not too high K, damp-
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ing of the modes via dissipation may not seriously con-
tend with the spin-gradient induced growth in solid state
plasmas. For astrophysical parameters (densities around
n = 1030cm−3), the collisional damping turns out to be
negligible compared with the growth rate. The normal-
ized growth rates are considerably greater than the nor-
malized growth rates for the solid state systems.
The behavior of the modes in the two distinct den-

sity regimes is qualitatively similar. For large K, the
light wave interacts strongly with one of the quantum
branches; this interaction induces the appearance of a
secondary peak in the growth rate. This, however, hap-
pens outside the range of K displayed in the figures. De-
tails will be given in a follow-up paper.
The polarization of the light wave is calculated from

Eqs. (6)-(8) in terms of the perturbed magnetic field
components along and perpendicular to the ambient spin

field, B1 = bses + bpes × k̂. The ratio bs/bp ≈ ǫ(−1 +

ia
√
1 +K2)/(aK

√
1 +K2) predicts the components to

be, only, slightly out of phase because the imaginary part
is much smaller than the real part. The ratio of the two
components is quite different for the two examples we
have worked out: for solid state plasmas, the magnetic
field is mainly orientated along the ambient spin, but,
for astrophysical plasmas, the perpendicular component
is dominant. The polarization is found to be, essentially,
independent of the isotropic ambient spin field.
The primary result of this paper is the creation of a

theoretical framework for a very exciting, and plausible

light amplification mechanism. It is shown that, for a
broad range of densities, the light wave propagating in
a quantum plasma can be driven unstable with growth
rates large enough to overcome intrinsic collisional damp-
ing. The waves feed on the free energy inherent in the
inhomogeneous macroscopic spin field. We find that the
mere existence of gradients is not sufficient. The spin
field variation has to be complex enough to guarantee a
non-vanishing equilibrium spin vorticity. It is the spin
vorticity that conspires to make the gradient free-energy
“available” for wave growth.

Our results were obtained for a quantum plasma with
no background magnetic field. If the plasma is, however,
embedded in an external magnetic field, kinetic theory
predicts instabilities [15] when the spin distribution is
not in thermodynamic equilibrium. It will be interesting
to compare and contrast the characteristics of the (spin
vorticity driven) fluid instability and the kinetic one.
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