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We study nonequilibrium phase transitions in the presence of disorder that locally breaks the
symmetry between two equivalent macroscopic states. In low-dimensional equilibrium systems,
such “random-field” disorder is known to have dramatic effects: It prevents spontaneous symmetry
breaking and completely destroys the phase transition. In contrast, we show that the phase transition
of the one-dimensional generalized contact process persists in the presence of random field disorder.
The ultraslow dynamics in the symmetry-broken phase is described by a Sinai walk of the domain
walls between two different absorbing states. We discuss the generality and limitations of our theory,
and we illustrate our results by large-scale Monte-Carlo simulations.

Impurities, defects, and other types of quenched disor-
der can have drastic effects on the long-time and large-
distance behavior of many-particle systems. For exam-
ple, disorder can modify the universality class of a crit-
ical point [1, 2], change a phase transition from first
order to continuous [3–5], or smear a sharp transition
over an interval of the tuning parameter [6]. Particu-
larly strong effects arise from disorder that locally breaks
the symmetry between two equivalent macroscopic states
while preserving the symmetry globally (in the statistical
sense). As this type of disorder corresponds to a random
external field in a magnetic system, it is usually called
random-field disorder. Recently, a beautiful example of
a random-field magnet was discovered in LiHoxY1−xF4

[7–9]. Random-field disorder naturally occurs when the
order parameter breaks a real-space symmetry such in as
nematic liquid crystals in porous media [10] and stripe
states in high-temperature superconductors [11].

Imry and Ma [12] discussed random-field effects at
equilibrium phase transitions based on an appealing
heuristic argument. Consider a uniform domain of linear
size L in d space dimensions. The free energy gain due
to aligning this domain with the (average) local random
field behaves as Ld/2 while the domain wall energy is of
the order of Ld−1 [13]. For d < 2, the system thus gains
free energy by forming finite-size domains that align with
the random field. In contrast, for d > 2, the uniform state
is preferred. Building on this work, Aizenman and Wehr
[5] proved rigorously that random-field disorder prevents
spontaneous symmetry breaking in all dimensions d ≤ 2
for Ising symmetry and d ≤ 4 for continuous symmetry.
Thus, random fields destroy an equilibrium phase tran-
sition in sufficiently low dimensions.

In nature, thermal equilibrium is rather the excep-
tion than the rule. Although equilibrium is an excel-
lent approximation for some systems, many others are
far from equilibrium and show qualitatively different be-
haviors. In recent years, phase transitions between dif-
ferent nonequilibrium states have attracted considerable
attention. Examples can be found in population dynam-
ics, chemical reactions, growing surfaces, granular flow as
well as traffic jams [14–18]. It is therefore important to

FIG. 1. (Color online) Time evolution of the generalized con-
tact process in the inactive phase: (a) without (µ = 5/6) and
(b) with random-field disorder (µh = 1, µl = 2/3). Active
sites are marked in red while I1 and I2 are shown in yellow
and blue. The difference between the diffusive domain wall
motion (a) and the much slower Sinai walk (b) is clearly vis-
ible (part of a system of 105 sites for times up to 108).

study random-field effects at such nonequilibrium phase
transitions. Are these transitions destroyed by random
fields just like equilibrium transitions?

In this Letter, we address this question for a promi-
nent class of nonequilibrium phase transitions, viz., ab-
sorbing state transitions separating active, fluctuating
states from inactive, absorbing states where fluctuations
cease entirely. We develop a heuristic argument show-
ing that random-field disorder which locally favors one
of two equivalent absorbing states over the other does
not prevent global spontaneous symmetry breaking in
any dimension. The random fields thus do not destroy
the nonequilibrium transition. In the symmetry-broken
phase, the relevant degrees of freedom are domain walls
between different absorbing states. Their long-time dy-
namics is given by a Sinai walk [19] leading to an ultra-
slow approach to the absorbing state during which the
density of domain walls decays as ln−2(t) with time t
(see Fig. 1). We also study the behavior right at the
critical point where we find even slower dynamics.

In the remainder of the Letter, we sketch the derivation
of the results; and we support them by Monte-Carlo sim-
ulations. For definiteness, we first consider the general-
ized contact process with two absorbing states [20] in one
dimension. We later argue that our heuristic argument
applies to an entire class of absorbing state transitions.
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The (simple) contact process [21] is a prototypical
model featuring an absorbing state transition. Each site
of a d-dimensional hypercubic lattice is either in the ac-
tive (infected) state A or in the inactive (healthy) state I.
The time evolution is a continuous-time Markov process
with infected sites healing at a rate µ while healthy sites
becomes infected at a rate λm/(2d) where m is the num-
ber of infected nearest neighbors. The long-time behavior
is governed by the ratio of λ and µ. If µ ≫ λ, healing
dominates over infection, and all sites will eventually be
healthy. The absorbing state without any infected sites is
thus the only steady state. For λ ≫ µ, the infection never
dies out, leading to an active steady state with nonzero
density of infected sites. The absorbing and active steady
states are separated by a nonequilibrium transition in the
directed percolation (DP) [22] universality class.
Following Hinrichsen [20], we generalize the contact

process by allowing each site to be in one of n + 1
states, the active state A or one of n inactive states Ik
(k = 1 . . . n). The time evolution of the generalized con-
tact process (GCP) is conveniently defined [20] via the
transition rates for pairs of nearest-neighbor sites,

w(AA → AIk) = w(AA → IkA) = µ̄k/n , (1)

w(AIk → IkIk) = w(IkA → IkIk) = µk , (2)

w(AIk → AA) = w(IkA → AA) = λ , (3)

w(IkIl → IkA) = w(IkIl → AIl) = σ , (4)

with k, l = 1 . . . n and k 6= l. All other rates vanish. The
GCP defined by (1) to (4) reduces to the simple contact
process if we set n = 1 and µ̄k = µk = µ (up to rescaling
all rates by the same constant factor [23]). The transition
(4) permits competition between different inactive states
as it prevents different domains from sticking together.
Instead, they can separate, and the domain walls can
move. We now set µ̄k = µk and λ = σ = 1 to keep
the parameter space manageable [24]. This also fixes the
time unit. Moreover, we focus on d = 1 and n = 2.
The long-time behavior again follows from comparing

the infection rate λ with the healing rates µ1 and µ2.
Consider two equivalent inactive states, µ1 = µ2 = µ.
For small µ, the system is in the active phase with
nonzero density of infected sites. In this fluctuating
phase, the symmetry between the two inactive states I1
and I2 is not broken, i.e., their occupancies are identical.
If µ is increased beyond µ0

c ≈ 0.628 [20, 25], the system
undergoes a nonequilibrium phase transition to one of
the two absorbing steady states (either all sites in state
I1 or all in state I2). At this transition, the symmetry
between I1 and I2 is spontaneously broken. Its critical
behavior is therefore not in the DP universality class but
in the so-called DP2 class which, in d = 1, coincides with
the parity conserving (PC) class [26]. If µ1 6= µ2, one of
the two inactive states dominates for long times, and the
critical behavior reverts back to DP.
We introduce quenched (time-independent) disorder

by making the healing rates µk(r) at site r indepen-
dent random variables governed by a probability dis-
tribution W (µ1, µ2). As we are interested in random-
field disorder which locally breaks the symmetry between
I1 and I2, we choose µ1(r) 6= µ2(r). Globally, the
symmetry is preserved in the statistical sense implying
W (µ1, µ2) = W (µ2, µ1). An example is the correlated
binary distribution

W (µ1, µ2) =
1

2
δ(µ1−µh)δ(µ2−µl)+

1

2
δ(µ1−µl)δ(µ2−µh)

(5)
with possible local healing rate values µh or µl [27].
To address our main question, namely whether the

random-field disorder prevents the spontaneous breaking
of the global symmetry between the two inactive states
and thus destroys the nonequilibrium transition, we ana-
lyze the large-µ regime where all healing rates are larger
than the clean critical value µ0

c . In this regime, almost all
sites quickly decay into one of the two inactive states I1
or I2. The relevant long-time degrees of freedom are do-
main walls between I1 and I2 domains. They move via a
combination of process (4) which creates an active site at
the domain wall and process (2) which allows this active
site to decay into either I1 or I2. Because of the disorder,
the resulting domain wall hopping rates depend on the
site r. Importantly, the rates for hopping right and left
are different because the underlying healing rates µ1(r)
and µ2(r) are not identical.
The long-time dynamics in the large-µ regime is thus

governed by a random walk of the domain walls. Due to
the local left-right asymmetry, this random walk is not a
conventional (diffusive) walk but a Sinai walk [28]. The
typical displacement of a Sinai walker grows as ln2(t/t0)
with time t [19] (t0 is a microscopic time scale), more
slowly than the well-known t1/2 law for a conventional
walk (see Fig. 1). When two neighboring domain walls
meet, they annihilate, replacing three domains by a single
one. Domain walls surviving at time t thus have a typi-
cal distance proportional to ln2(t/t0). The domains grow
without limit, and their density decays as ln−2(t/t0). In
the long-time limit, the system reaches a single-domain
state, i.e., either all sites are in state I1 or all in I2. This
implies that the symmetry between I1 and I2 is spon-
taneously broken (which of the two absorbing states the
system ends up in depends on details of the initial condi-
tions and of the stochastic time evolution). The nonequi-
librium transition consequently persists in the presence
of random-field disorder.
It is important to contrast the domain wall dynamics

in our system with that of a corresponding equilibrium
problem such as the random-field Ising chain (whose low-
temperature state consists of domains of up and down
spins [29]). The crucial difference is that the inactive
states I1 and I2 in our system are absorbing: Active
sites and new domain walls never arise in the interior
of a domain. In contrast, inside a uniform domain of the
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FIG. 2. (Color online) Density ρ vs. time t for several values
of the healing rate µ. The data are averages over 60 to 200
disorder configurations. Inset: The log-log plot shows that
the density decay is slower than a power law for all µ.

random-field Ising chain, a spin flip (which creates two
new domain walls) can occur anywhere due to a thermal
fluctuation. This mechanism limits the growth of the typ-
ical domain size to its equilibrium value dictated by the
Imry-Ma argument [12], and thus prevents spontaneous
symmetry breaking.

To verify these heuristic arguments and to illustrate
the results, we perform Monte-Carlo simulations [25] of
the one-dimensional GCP with random-field disorder.
We use system sizes up to L = 105 and times up to
t = 2 × 108. The random-field disorder is implemented
via the distribution (5) with 1.5µl = µh ≡ µ. Our simu-
lations start from a fully active lattice (all sites in state
A), and we monitor the density ρ of active sites as well
as the densities ρ1 and ρ2 of sites in the inactive states
I1 and I2, respectively. Figure 2 presents an overview of
the time evolution of the density ρ.
We now focus on the curves with healing rates µ & 1.0

for which both µh = µ and µl = 2µ/3 are larger than the
clean critical value µ0

c . The inset of Fig. 2 shows that the
density continues to decay to the longest times studied for
all these curves. However, the decay is clearly slower than
a power law. To compare with our theoretical arguments,
we note that active sites only exist near domain walls
in the large-µ regime. We thus expect the density of
active sites to be proportional to the domain wall density,
yielding ρ ∼ ln−2(t/t0). To test this prediction we plot
ρ−1/2 vs. ln(t) in Fig. 3; in such a graph the expected
behavior corresponds to a straight line. The figure shows
that all curves with µ > 1 indeed follow the prediction
over several orders of magnitude in time.

In addition to the inactive phase, we also study the
critical point. To identify the critical healing rate µc,
we extrapolate to zero both the stationary density ρst =
limt→∞ ρ(t) in the active phase and the inverse prefactor
of the ln−2(t/t0) decay in the inactive phase. This yields

FIG. 3. (Color online) ρ−1/2 vs. ln(t) for several values of
the healing rate µ. The solid straight lines are fits to the
predicted behavior ρ ∼ ln−2(t/t0).

0 2 4 6 8 10 12 14 16 18 20
ln(t)

0

2500

5000

7500

10000

ρ-2

0.8 1 1.2 1.4
µ

0

0.1

0.2

0.3

ρ s
t2/

3

0

2

4

6

8

10

B
-1

.2

ρst

B

FIG. 4. (Color online) Density vs. time at the critical healing

rate µc = 0.8, plotted as ρ−1/x vs. ln(t) with x = 0.5. The
solid line is a fit to ρ(t) ∼ ln−x(t/t0). Inset: Identifying µc

from the stationary density ρst in the active phase and the
prefactor of the ρ = B ln−2(t/t0) decay in the inactive phase.

µc ≈ 0.80 (see inset of Fig. 4). At this healing rate,
the density decay is clearly slower than the ln−2(t/t0)
law governing the inactive phase. This extremely slow
decay and the uncertainty in µc prevent us from deter-
mining the functional form of the critical ρ(t) curve un-
ambiguously. If we assume a time dependence of the
type ρ(t) ∼ ln−x(t/t0) we find a value of x ≈ 0.5. More-
over, from the dependence of the stationary density on
the healing rate, ρst ∼ (µc−µ)β , we obtain β ≈ 1.5. The
values of x and β should be considered rough estimates.
An accurate determination of the critical behavior of the
GCP with random-field disorder requires a significantly
larger numerical effort and remains a task for the future.

In summary, we have shown that the nonequilibrium
phase transition of the one-dimensional GCP survives in
the presence of random-field disorder, in contrast to one-
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dimensional equilibrium transitions that are destroyed by
random fields. In the concluding paragraphs, we discuss
the generality and limitations of our results.
The crucial difference between random-field effects in

equilibrium systems such as the random-field Ising chain
and in the GCP is the absorbing character of the inactive
states I1 and I2 in the latter. The interior of an I1 or I2
domain is “dead” as no active sites and no new domain
walls can ever arise there. In contrast, in an equilibrium
system, pairs of new domain walls can appear in the inte-
rior of a uniform domain via a thermal fluctuation. This
limits the growth of the typical domain size to the Imry-
Ma equilibrium size and thus destroys the equilibrium
transition (in sufficiently low dimensions). We expect
our results to hold for all nonequilibrium phase transi-
tion at which the random-field disorder locally breaks the
symmetry between two absorbing states. Other nonequi-
librium transitions may behave differently. For example,
our theory does not apply if the random fields break the
symmetry between two active states.
In the symmetry-broken inactive phase, the dynamics

of the GCP with random-field disorder is ultraslow. It
is governed by the Sinai random walk of domain walls
between the two inactive states. This leads to a loga-
rithmic time decay of the densities of both domain walls
and active sites. Note that the Sinai coarsening dynamics
has been studied in detail in the equilibrium random-field
Ising chain [30] where it applies to a transient time regime
before the domains reach the Imry-Ma equilibrium size.
Although our explicit results are for one dimension,

we expect our main conclusion to hold in higher dimen-
sions, too. In the interior of a uniform domain of an
absorbing state, new active site (and new domain walls)
cannot arise in any dimension. Moreover, the Imry-Ma
mechanism by which the random fields destroy an equi-
librium transition becomes less effective in higher dimen-
sions. Indeed, Pigolotti and Cencini [31] report sponta-
neous symmetry breaking in a model of two species com-
peting in a two-dimensional landscape with local habitat
preferences. To further study this question, we plan to
introduce random fields into our simulations of the two-
dimensional GCP [32].
Finally, we turn to experiments. Although clear-cut re-

alizations of absorbing state transitions were lacking for a
long time [33], beautiful examples were recently found in
turbulent liquid crystals [34], driven suspensions [35, 36],
and superconducting vortices [37]. As they are far from
equilibrium, biological systems are promising candidates
for observing nonequilibrium transitions. A transition in
the DP2 universality class (as studied here) occurs in a
model of competing bacteria strains [38] which accurately
describes experiments in colony biofilms [39]. Random-
field disorder could be realized in such experiments by
environments that locally favor one strain over the other.
We thank M. Muñoz and G. Odor for helpful discus-
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