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We examine numerically the zero-temperature 2+1 dimensional directed polymer in a random
medium, along with several of its brethren via the Kardar-Parisi-Zhang equation. Using finite-size
& KPZ scaling Ansätze, we extract the universal distributions controlling fluctuation phenomena
in this canonical model of nonequilibrium statistical mechanics. Specifically, we study pt-pt, pt-line
& pt-plane geometries, scenarios which yield higher dimensional analogues of the Tracy-Widom
distributions of random matrix theory. Our analysis represents a robust numerical characterization
of 2+1 KPZ Class universality.

PACS numbers: 05.10.Gg, 05.40.-a, 64.70.qj

For the past 25 years, the celebrated work [1] of Kar-
dar, Parisi & Zhang (KPZ) has held center-stage within
the realm of nonequilibrium statistical mechanics. In-
voking the spirit of Landau, these authors put forth a
continuum description of kinetically roughened micro-
scopic models of stochastic growth, capturing their es-
sential universal scaling behaviors. In this context, KPZ
consider a fluctuating height variable h(x, t), evolving as:

∂th = ν∇2h+
1

2
λ(∇h)2 +

√
Dη(x, t)

where x is a d-dimensional vector in the substrate plane
of growth, ν, λ&D are phenomenological parameters, the
last setting the strength of the stochastic noise, which
is uncorrelated in space & time and possessing variance
〈ηx′,t′ηx,t〉=δd(x′ − x)δ(t′ − t). As a diffusive Langevin
equation supplemented by rotationally invariant nonlin-
earity, the KPZ equation has become a fundamental
equation of 21st-century theoretical physics. The sim-
ple Hopf-Cole transformation, h(x, t)=(2ν/λ)lnZ(x, t)),
maps KPZ stochastic growth onto the equilibrium statis-
tical physics of directed polymers in a random medium
(DPRM); i.e., a Schrodinger equation with multiplicative
disorder for the restricted partition function Z(x, t) :

∂tZ = ν∇2Z + (λ
√
D/2ν)Zη

itself a paradigmatic model of ill-condensed matter
physics. By contrast, the substitution v = ∇h takes one
to the well-studied noisy Burgers equation, which in 1+1
dimensions, ties the KPZ growth & DPRM problems to
the rather fertile & amply harvested field of driven lat-
tice gases (DLG), beloved by the mathematics commu-
nity. Consequently, investment in the KPZ triumvirate
of stochastic growth, directed polymers, & driven lattice
gases, pays off handsomely. Early analytical, numeri-
cal & experimental work on the KPZ class of problems,
well-documented in reviews [2], focussed on scaling ex-
ponents, universal amplitude ratios [3], and a tantaliz-
ing glimpse [4] of full probability distributions (PDFs)
of the 1+1 KPZ Class. The past twelve years have wit-
nessed several spectacular advances within the realm of

1+1 KPZ, a consequence of mathematicians bringing a
vast arsenal of analytical tools to bear on the matter [5].
Firstly, Johansson [6] revealed that the height fluctua-
tions of the 1+1 single-step (SS) model [7] grown from
a point seed were captured by the Tracy-Widom (TW)
GUE distribution [8], an astounding, entirely unantic-
ipated discovery that immediately connected the 1+1
KPZ triumvirate to a huge & distinguished university
class of gaussian random matrices. Shortly thereafter,
Prähofer & Spohn [9] observed that 1+1 polynuclear
growth (PNG) mapped directly onto the Ulam prob-
lem regarding statistics of the longest increasing subse-
quence (LIS) of random permutations, also governed [10]
by TW GUE. These authors made it quite clear, as
well, that a different distribution, TW GOE, was rele-
vant to 1+1 KPZ stochastic growth from a flat substrate
IC. A decade later, tour de force exact solutions of the
1+1 KPZ/DPRM problem, including the full time evo-
lution of the universal PDFs to their asymptotic TW
forms was managed by independent researchers using
complementary WASEP [11] & replica-theoretic DPRM
approaches [12]. Simultaneously, in a series of beautiful
experiments, Takeuchi & Sano [13] managed to observe
both TW GOE & GUE statistics in a 1+1 KPZ kinetic
roughening experiment down to a probabilities as small
as 10−4. The crucial role of KPZ scaling theory in deci-
phering these experiments, as well as providing a deeper
understanding of the 1+1 exact solutions, has been much
emphasized recently by Spohn [14].

Our purpose here is to unearth the rich universality of
2+1 KPZ, a problem for which there are no known exact
results and where, furthermore, the higher dimension-
ality allows additional geometric possibilities. We focus
attention on 7 distinct models within the 2+1 KPZ Class:
a) 4 DPRM variations, b) RSOS- a classic model of KPZ
kinetic roughening, c) a direct Eulerian integration of the
2+1 KPZ equation and, finally, d) 2d Driven Dimers-
an octahedral KPZ deposition model due to Kelling &
Ódor [15], which permits a direct interpretation in terms
of a 2d DLG of dimers in the plane. Within the DPRM
sector of the 2+1 KPZ Class, we have restricted ourselves
to T=0, so our DPRM simulations amount to a transfer
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matrix calculation of the globally optimal directed walk

through a 3d lattice of random energy sites, the total
path energy being the sum of the site energies visited
along the way. The three relevant 2+1 DPRM geome-
tries are the pt-pt, pt-line, and pt-plane. In all instances,
the directed walk commences at the origin, but in the pt-
pt geometry the endpoint is also fixed, while the others
constrain said endpoint to line or plane, respectively. Re-
garding the pdf from which the individual site energies
are drawn, we stick to the main KPZ story line, consid-
ering disorder that is spatiotemporally uncorrelated, but
pulled from uniform (u), gaussian (g), or exponential (e)
distributions. There is freedom, too, in specifying the
crystallographic nature of the 3d lattice (sc, fcc, or bcc),
as well as the possible inclusion of a microscopic elas-

tic energy cost, typically denoted γ [3], associated with
transverse steps. Among our DP models, we consider:
i) e3fcc DPRM, in which trajectories emanate from the
origin (0,0,0), proceed into the first octant, travel on av-
erage along the (1,1,1)-direction, collecting random site
energies ε drawn from the exponential distribution p(ε)=
e−|ε|. Our e3fcc DPRM generalizes to higher dimension
the 1+1 DPRM in the wedge geometry [16] which, with
exponentially distributed site energies, is strict counter-
part to the 1+1 SS KPZ growth model & TASEP DLG,
solved rigorously by Johannson [6], who made explicit
the extraordinary connection of 1+1 KPZ to TW GUE
random matrix statistics. For this reason alone, the e3fcc
DPRM plays a special role in our analysis, and is exam-
ined in all three geometries. We mention, too, that this
particular model is the precise 2+1 DPRM analog of the
3d Corner Growth (CG) model examined by Olejarz et

al. [17] whose focus was on the unknown macroscopic
limit shape, rather than the height fluctuations which
concern us here. Our own investigation of the anisotropic
line tension of the 2+1 e3fcc DPRM, relevant to the
limit shape geometry of the CG model, will be discussed
elsewhere. Other DP models include- ii) g4bcc: body-
centered cubic arrangement, with gaussian distributed
site energies (zero mean, unit variance), iii) u5sc: simple
cubic lattice, site energies drawn uniformly from (0, 1),
with elastic energy cost γ=1, and finally, iv) g5sc: simple
cubic again, same γ, but with gaussian energies, this time
zero mean, variance 1

4
. In the last instances, the transfer

matrix code is built upon an update rule of the form-
Ex′,t+1=ε+Min[Ex1,t, E

′
x2,t, E

′
x3,t, E

′
x4,t, E

′
x5,t],where xn

locates the nth nearest neighbor in the preceding plane
(i.e., time-slice), E′

xn,t=Exn,t+γ, and the TM calculation
tracks, from one plane to the next, the entire collection
of locally optimal DPRM paths via the above prescrip-
tion; the globally extremal path being the least energetic
member of this ensemble of locally optimal paths [2]. All
DP models possess similar rules, though e3fcc & g4bcc
have no elastic energy cost built in, so γ = 0.

For each 2+1 DPRM model, we study initially the
full free-energy PDF associated with the globally mini-
mal trajectory documenting, as well, its rms fluctuation,
skewness s, and kurtosis k. For the u5sc DPRM, our gold
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FIG. 1: Fluctuation PDFs: 2+1 KPZ Class Models.

standard, we simulated polymers of length t=1000, in an
LxL system of transverse size L=5000, averaging over
nr=1880 realizations of the random energy landscape,
representing some 47 billion data points in our binned
construction of the free energy PDF, shown in Figure 1,
a semi-log plot. Similarly, g5sc:(L, nr, t)=(104, 432, 103);
g4bcc:(L, nr, t)=(104, 48, 103); e3fcc:(nr, t)=(107, 500) all
comply to a universal 2+1 KPZ data collapse. Here,
the abscissa a ≡ (E − 〈E〉)/Erms, the deviation scaled
by the rms fluctuation, is the key dimensionless quantity.
We also include in the figure our 2+1 KPZ Euler integra-
tion, with (L, nr, t) = (104, 102, 2000), a quite substantial
numerical investment, well beyond [18]; parameter values
chosen were (λ, ν,D)=(20, 1

2
,1), with white noise, and in-

tegration time step δt=0.02. We show too, in Fig 1, the
height fluctuation PDFs of the 2+1 RSOS & 2d Driven
Dimer models; again L = 104, with averaging over 32 &
12 runs, resp. For these two kinetic roughening models,
as well as the KPZ equation itself, a ≡ (h − 〈h〉)/hrms,
representing the scaled height fluctuation, as h and F are
cognate variables in the stochastic growth and DPRM
contexts. In any case, the severe data collapse for these
7 distinct members of the 2+1 KPZ Class provide us with
strong evidence, indeed, of universality in this higher di-
mension, well into the tails.

To dig deep to the core of 2+1 KPZ universality, and
lay the groundwork for the remainder of this paper, we
now discuss in greater detail the full machinery of KPZ
scaling theory, which rests upon a careful determination
of the characteristic KPZ nonlinearity λ, as well as the
static amplitude A, defined via the fixed-time height-
height k-space correlator: 〈|h(k)|2〉=Ak−2−2χ. The es-
sential ideas, laid out already for 1+1 KPZ [3], with
additional helpful details in [5], focusses on the dimen-
sionless time θt, where θ=A1/χλ, with χ the steady-state

KPZ critical index. The basic KPZ narrative involves
a bump on the surface of height ξ⊥, lateral dimension



3

Model f∞(v∞) λ A χ θ β 〈ξ〉 〈ξ2〉c s k
u5sc Kim DP 0.38390 -0.1585 1.1978 0.389 0.2518 0.2402 -0.714 0.250 -0.422 0.343
g5sc DPRM -0.55336 -0.2182 1.74215 0.381 0.9363 0.2425 -0.675 0.211 -0.433 0.356
e3fcc DPRM -2.64381 -0.1439 21.03 0.387 375.3 0.248 -0.754 0.208 -0.435 0.362
g4bcc DPRM -1.80949 -0.5014 2.8248 0.380 7.7198 0.235 -0.851 0.240 -0.412 0.320
KPZ Euler 0.17606 20 0.02295 0.388 1.192x10−3 0.2408 -0.679 0.236 -0.423 0.354
2+1 RSOS 0.31270 -0.414 1.2005 0.383 0.66144 0.2422 -0.737 0.233 -0.430 0.357
2d Driven Dimers 0.34141 -0.6094 1.2201 0.375 1.0359 0.2415a -0.830 0.256 -0.414 0.338

aref. [15]

TABLE I: 2+1 KPZ Class Parameters, pt-plane DPRM geometry; equivalently, KPZ stochastic growth from a flat substrate.

FIG. 2: Disorder-averaged, parabolic DPRM free energy pro-
file. Insets: a) Summary Krug-Meakin plot for 2+1 KPZ
Class models, b) quadratic KPZ tilt-dependent growth veloc-
ity [23] for the 2+1 RSOS model.

ξ‖, which evolves according to the KPZ nonlinear term

as ξ̇‖≈λ(ξ⊥/ξ‖). With the transverse fluctuation scal-

ing as ξ⊥∼Aξχ‖ , consistency demands ξ‖∼(A2λt)1/z while

ξ⊥∼(θt)β=χ/z , with θ as above, and dynamic index z=2-χ
given by the KPZ identity. With the key scaling parame-
ter θ known, universal KPZ amplitudes can be extracted
for each model and compared across the 2+1 KPZ spec-
trum. Motivated by the exact 1+1 results of Sasamoto
& Spohn [11], we conjecture that the solution of the 2+1
KPZ equation for 3d wedge (i.e.,“conical”) IC centered at
the origin has the form: h(x, t)=−x2/2λt+ v∞t+(θt)βξ
with the understanding that the statistics of the ran-
dom variable ξ has become the focus, and, its PDF

the definitive expression of 2+1 KPZ universality. We
have determined the KPZ early-time exponent β inde-
pendently for each model; our DPRM, RSOS, & KPZ
Euler results in fine accord with both revered [19], 0.240,
and more recent [15] blue-chip estimates for this index.
To pin down P (ξ), and reveal its universal nature, we
sift, anew, through the large data sets underlying the
fluctuation PDFs of Figure 1, recasting the analysis in
terms of ξ=(h− v∞t)/(θt)β , where, in the KPZ context,
v∞=〈dh/dt〉 is the asymptotic instantaneous growth ve-

locity; analogously, f∞=〈dF/dt〉, the DPRM free energy
per unit length. It is the distribution P (ξ) which lies at
the heart of 2+1 KPZ Class universality, and the matter
demands, in addition to knowledge of θ, a precise deter-
mination of KPZ/DPRM v∞/f∞. To this end, we have
relied heavily upon a Krug-Meakin [20] finite-size scaling
analysis which, by virtue of a truncated Fourier sum over
modes, reveals that the KPZ growth velocity in a system
of finite size L suffers a small shift from its true asymp-
totic value: ∆v ≡ 〈dh/dt〉 − v∞ = − 1

2
Aλ/L2−2χ; for the

DPRM problem, the corresponding free energy shift ∆f
represents an ill-condensed matter manifestation of the
Casimir Effect [21]. In Figure 2, we show results for our
seven 2+1 KPZ Class models- in fact, the first pass in-
volves a 3-parameter fit, yielding v∞, the product Aλ,
and χ; knowing v∞ and χ, see Table I for values, allows
construction of a summary Krug-Meakin plot of ∆v vs
1/L2−2χ, including all 7 models, with slopes set by −Aλ

2
,

see Fig 2(a). Via diverse procedures, it is also possible to
extract the KPZ nonlinearity λ directly; for the DPRM
systems, we rely upon the disorder-averaged quadratic

free-energy profile, an insight that dates back to Parisi &
Mezard [22], but is implicit in our Sasamoto-Spohn con-
jecture above. Ultimately, it follows from the fact that at
early times with conical IC, the KPZ nonlinearity dom-
inates, generating Cole-Hopf paraboloids with small su-
perposed distortions arising from the additive KPZ noise
term. While such noise is visible for each individual run,
ensemble averaging produces a smooth parabolic profile-
see Fig 2, proper, which follows from 104 realizations of
our DPRM random energy landscape. Alternatively, for
the KPZ stochastic growth models, such as 2+1 RSOS,
we study the tilt-dependent growth velocity [23], Fig
2(b). For 2d Driven Dimers, A is known [15], so we get
λ directly from the Krug-Meakin plot. Recall all DPRM
models, by default, have λ < 0; by contrast, our KPZ
Euler integration was done with positive λ=20. With θ
and f∞ extracted for each of our models, refer to Table I,
we can now craft a full portrait of 2+1 KPZ universality
for the pt-plane DPRM geometry- see Figure 3. In this
much more stringent test of universality, we note several
key points gleaned from Figure 3 and associated Table I,
where the final four columns record our model estimates
for the mean, variance, skewness and kurtosis of P (ξ):
i) Firstly, the existence of a unified 2+1 KPZ Class, per
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FIG. 3: Universal PDF, 2+1 KPZ Class: DPRM pt-plane

geometry; KPZ stochastic growth with flat interface IC.

se, is manifest, ii) As in the case of 1+1 KPZ [24], there
is a small, but persistent, dispersion of among the mod-
els owing to a stubborn approach to asymptopia by the
first moment 〈ξ〉; see, esp., g4bcc DPRM, iii) Skewness
& kurtosis of 2+1 KPZ pt-plane problem are larger than
TWGOE; an average over our models yields s=-0.426(6),

k=0.35(1), 〈ξ2〉c=0.232(18) & 〈ξ〉/√〈ξ2〉c=-1.46(9); even
so, the iv) Long right tail, as measured precisely by us for
the g5sc DPRM, has an exponent 1.495(10) nearly indis-
tinguishable from the exact Airy value 3

2
, characteristic

of Tracy-Widom 1+1 KPZ. We wonder whether, intu-
ition to the contrary, the 2+1 KPZ Class may possess
some vestigial link to the Painlève system & determinan-
tal point processes, leaving open, perhaps, the possibility
of a fulcrum, rational critical index.
Finally, in Figure 4, we plot up the challenging dis-

tributions associated with the pt-line & pt-pt geome-
tries, studied by us with the wedge e3fcc DPRM. In the
2+1 KPZ kinetic roughening context, these PDFs dic-
tate height fluctuations for self-similar growth initiated,
resp., from point seed and 1d groove initial conditions,
the former corresponding to TW GUE, the latter hav-
ing no lower dimensional analog. We note here, particu-
larly, that s & k increase in magnitude as one progresses
from pt-pt, pt-line, and pt-plane problems, whereas the

first and second moments trend in the opposite fashion-
see Fig 4, table insert. We expect the pt-pt geometry,
with extremal trajectories connecting far corners of the
cube, will witness the first analytical advance; in its semi-
discrete Poissonized DPRM form, it is germane to the
generalized random permutation & PNG problems [9].

In summary, we have presented a complete, multi-
faceted portrait of 2+1 KPZ Class universality, extract-
ing the three characteristic PDFs associated with distinct
DPRM pt-plane, pt-line, & pt-pt geometries. This repre-
sents a robust numerical solution of the 2+1 KPZ prob-
lem. It is our hope that this work will inspire experimen-
talists as well as anchor future analytical efforts, provid-
ing a target for physicists & mathematicians alike to shed
light on the kinship of these distributions, and reveal its
underlying superuniversal fixed point structure. Given
the replica-theoretic interpretation of the 2+1 DPRM,
explicit calculation of any one of our numerical PDFs
would not only reveal much regarding KPZ stochastic
growth phenomena & DLG interacting particle systems,
but also the foundational statistical mechanical problem
of attractive bosons in two dimensions.

We are grateful to J. Krug & E. Brézin for illuminating,
very helpful discussions regarding our work.

FIG. 4: Universal PDFs: 2+1 DPRM pt-pt & pt-line geome-
tries, left & right, resp. Table insert: Distribution moments.
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