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Quantum computation that combines the coherence stabilization virtues of decoherence-free subspaces and
the fault tolerance of geometric holonomic control is of great practical importance. Some schemes of adiabatic
holonomic quantum computation in decoherence-free subspaces have been proposed in the past few years.
However, non-adiabatic holonomic quantum computation in decoherence-free subspaces, which avoids long
run-time requirement but with all the robust advantages, remains an open problem. Here, we demonstrate how
to realize non-adiabatic holonomic quantum computation indecoherence-free subspaces. By using only three
neighboring physical qubits undergoing collective dephasing to encode one logical qubit, we realize a universal
set of quantum gates.

PACS numbers: 03.67.Pp, 03.65.Vf

The discovery of geometric phase [1, 2] and quantum
holonomy [3, 4] accompanying evolutions of quantum sys-
tems has unveiled important geometric structures in the de-
scription of physical states. These structures show that the
twisting of subspaces, e.g., eigenspaces of adiabaticallyvary-
ing Hamiltonian, can be used to manipulate quantum states in
a robust manner. This is the initial idea of holonomic quantum
computation (HQC), first proposed by Zanardi and Rasetti [5].
HQC has emerged as a key tool to implement quantum gates
acting on sets of quantum bits (qubits). As is well known, er-
rors in the control process of a quantum system are one main
practical difficulty in building a quantum computer, and prop-
agation of these errors may quickly spoil the whole quantum
computational process. Since HQC is fault tolerant with re-
spect to certain types of errors in the control process, it has
been used to realize robust quantum computation [6–17].

Besides errors produced in the control process, decoherence
is another main practical difficulty in building a quantum com-
puter. Decoherence is caused by the inevitable interactionbe-
tween the computational system and its environment. It col-
lapses the desired coherence of the system and may thereby
be detrimental to the efficiency of quantum computation. Pro-
tecting qubits from the effects of decoherence is a vital re-
quirement for any quantum computer implementation. Vari-
ous strategies have been proposed to protect quantum infor-
mation against decoherence. Among the them, decoherence-
free subspaces (DFSs) provide a promising way to avoid quan-
tum decoherence [18]. The basic idea of DFSs is to utilize the
symmetry structure of the interaction between the system and
its environment. Information is encoded in a subspace of the
Hilbert space of a system, over which the dynamics is unitary.
DFSs have been experimentally realized in many physical sys-
tems [19–23].

To protect quantum information from both errors produced
in the control process and decoherence caused by the envi-

∗Email: tdm@sdu.edu.cn

ronment, quantum gates that combine the coherence stabiliza-
tion virtues of DFSs and the fault tolerance of geometric holo-
nomic control are of great practical importance. To this end,
schemes of HQC in DFSs have been proposed recently [10–
12]. Wu et. al [10] proposed the first scheme of adiabatic
HQC in DFSs, in which one logical qubit is encoded by four
neighboring physical qubits and the quantum holonomies are
accumulated by adiabatically changing the couplings between
the qubits along dark states. The scheme is robust against col-
lective dephasing and some stochastic errors. Yet, the require-
ment of adiabatic control of four neighboring physical qubits
undergoing collective dephasing is an experimental challenge.
All other schemes that can realize a universal set of holonomy
quantum gates in DFSs are based on adiabatic evolution too,
and they met the same problem of long-run time requirement.

In this Letter, we develop a scheme for non-adiabatic uni-
versal holonomic quantum computation in decoherence-free
subspaces. Our proposal avoids the long run-time require-
ment but shares all the robust advantages of its adiabatic coun-
terpart. An additional attractive feature of this non-adiabatic
setting is that only three neighboring physical qubits under-
going collective dephasing are needed to encode one logical
qubit. We further demonstrate that three neighboring physi-
cal qubits is the minimal number for realizing non-adiabatic
HQC in DFSs, although two neighboring physical qubits may
construct the minimal DFS.

Before proceeding further, we explain how quantum holon-
omy may arise in non-adiabatic unitary evolution. Considera
quantum system described by anN−dimensional state space
and exposed to the HamiltonianH(t). Assume there is a time-
dependentL−dimensional subspaceS(t) spanned by the or-
thonormal basis vectors{|φk(t)〉}Lk=1 at each instantt. Here,
|φk(t)〉 satisfy the Schrödinger equationi|φ̇k(t)〉 = H(t)|φk(t)〉.
That is,|φk(0)〉 → |φk(t)〉 = U(t, 0)|φk(0)〉 with the time evolu-
tion operatorU(t, 0) = T expi

∫ t

0
H(t′)dt′, T being time order-

ing. One may conclude that the unitary transformationU(τ, 0)
is a holonomy matrix acting on theL−dimensional subspace
S(0) spanned by{|φk(0)〉}Lk=1 if |φk(t)〉 satisfy the following re-
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quirements:

(i)
L

∑

k=1

|φk(τ)〉〈φk(τ)| =
L

∑

k=1

|φk(0)〉〈φk(0)|, (1)

(ii) 〈φk(t)|H(t)|φl(t)〉 = 0, k, l = 1, . . . , L. (2)

To verify thatU(τ, 0) is a holonomy matrix acting onS(0), we
first note that condition (i) entails that the subspace undergoes
cyclic evolution, i.e., we can introduce a set of the auxiliary
bases|νk(t)〉 of S(t) with the property

|νk(τ)〉 = |νk(0)〉 = |φk(0)〉, k = 1, . . . , L. (3)

Note that|νk(t)〉 need not satisfy the Schrödinger equation, and
therefore such bases can always be found [24]. By the aid of
|νk(t)〉, |φk(t)〉 may be expressed as

|φk(t)〉 =
L

∑

l=1

|νl(t)〉Clk(t), (4)

whereCkl(t) are time dependent coefficients. Substituting Eq.
(4) into the Schrödinger equation yields

d
dt

Clk(t) = i
L

∑

m=1

(

Alm(t) − Klm(t)
)

Cmk(t), (5)

whereAkl(t) = i〈νk(t)| ddt |νl(t)〉, andKkl(t) = 〈νk(t)|H(t)|νl(t)〉.
Condition (ii) is equivalent toKkl(t) = 0, i.e., the Hamilto-
nian vanishes onS(t) and henceC(t) = T expi

∫ t

0
A(t′)dt′.

The matrixA(t) transforms as a proper gauge potential under
the change|νk(t)〉 →

∑L
l=1 |νl〉Vlk(t), whereV(t) is any unitary

once differentiableL × L matrix such thatV(τ) = V(0). At
time t = τ, there isC(τ) = Pei

∮

A, whereA = Adt is the
connection one-form andP is path ordering. From Eq. (4),
we have|φk(τ)〉 =

∑L
l=1 |νl(τ)〉Clk(τ) =

∑L
l=1 |φl(0)〉Clk(τ). It

indicates thatC(τ) is just the transformation matrix from ini-
tial states to final states in the subspace considered. Hence,
we finally obtain

U(τ) ≡ C(τ) = Pei
∮

A. (6)

Equation (6) shows thatU(τ) is a holonomy matrix in the
space spanned by{|φk(t)〉}Lk=1.

Let us now elucidate our physical model. The computa-
tional system consists ofN physical qubits interacting collec-
tively with a dephasing environment. The Hamiltonian of the
system reads

H =
∑

k<l

(Jx
klR

x
kl + Jy

klR
y
kl), (7)

whereJx
kl and Jy

kl are controllable coupling constants, which
are driven to enact the quantum computation, and

Rx
kl =

1
2

(σx
kσ

x
l + σ

y
kσ

y
l ), Ry

kl =
1
2

(σx
kσ

y
l − σ

y
kσ

x
l ). (8)

The operatorsRx
kl andRy

kl are XY and Dzialoshinski-Moriya
[25, 26] interaction terms, whereσx

k (σy
k) represents the Pauli

X (Y) operator acting on thekth qubit. A variety of quan-
tum systems, including trapped ions and quantum dots, can
be described by this Hamiltonian [27–30]. The major source
of decoherence in the quantum system is dephasing. The ef-
fect of the dephasing environment on theN−qubit system is
described by the interaction Hamiltonian,

HI =
(
∑

k

σz
k

)

⊗ B, (9)

whereσz
k is the PauliZ operator acting on thekth qubit, and

B is an arbitrary environment operator. The symmetry of the
interaction implies that there exists a DFS that can be used to
protect quantum information against decoherence. Our aim is
to find a realization of non-adiabatic HQC in this DFS.

We begin by showing that two physical qubits are not suf-
ficient to realize decoherence-free non-adiabatic HQC in the
presence of a dephasing environment. For a two-qubit sys-
tem, the corresponding DFS is spanned by

{

|01〉, |10〉
}

. In
order to protect the quantum gates from decoherence, logi-
cal qubits must be encoded in this DFS, and the state of the
system must be kept within the subspace during the whole
evolution. Thus, the DFS itself must be an invariant sub-
space during the system’s evolution. In addition, to ensurethat
the gates are holonomic, condition (ii) must be satisfied, i.e.,
〈k|U(t, 0)†H(t)U(t, 0)|l〉 = 0 for k, l = 01, 10. This is equiva-
lent to 〈k|H(t)|l〉 = 0 since the DFS is an invariant subspace.
Thus,H(t) = 0 in the subspace and it follows that one cannot
realize non-adiabatic HQC in the DFS of two physical qubits
since there is no nontrivial Hamiltonian to meet conditions(i)
and (ii) above.

For three physical qubits interacting collectively with the
dephasing environment, there exists a three-dimensional DFS

SD
= Span

{

|100〉, |010〉, |001〉
}

. (10)

We encode a logical qubit in the subspace

SL
= Span

{

|010〉, |001〉
}

, (11)

and denote the computational basis elements as|0〉L =

|010〉, |1〉L = |001〉. Clearly, SL is a subspace ofSD and
the remaining vector|100〉 is used as ancillae, denoted as
|a〉 = |100〉 for convenience. In the following paragraphs,
we utilize the DFS of three physical qubits to implement non-
adiabatic HQC. To this end, we need to generate two noncom-
muting single-qubit gates and one nontrivial two-qubit gate.

Firstly, we demonstrate how to realize the one-qubit holo-
nomic gate

Uxz(φ1) = XLeiφ1ZL . (12)

Here, XL = |0〉L〈1|L + |1〉L〈0|L, ZL = |0〉L〈0|L − |1〉L〈1|L are
the Pauli operators of the logical qubit andφ1 is an arbitrary
phase. In the computational basis{|0〉L, |1〉L}, the gate reads

Uxz(φ1) =

(

0 e−iφ1

eiφ1 0

)

. (13)
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In order to realizeUxz(φ1), we setJx
12 = J1 cosφ1

2 , Jy
12 =

−J1 sin φ1

2 , Jx
13 = −J1 cosφ1

2 , Jy
13 = −J1 sin φ1

2 , and all other

Jx(y)
kl to zero, whereJ1 is a time-independent parameter [31].

The Hamiltonian then reads

H1 = J1

[

(Rx
12− Rx

13) cos
φ1

2
− (Ry

12+ Ry
13) sin

φ1

2

]

. (14)

SD itself is an invariant subspace of the evolution operator
U1(t) = e−iH1t. In the basis{|a〉, |0〉L, |1〉L}, we have

H1 = J1

























0 ei
φ1
2 −e−i

φ1
2

e−i
φ1
2 0 0

−ei
φ1
2 0 0

























. (15)

With the obvious expression ofH1, we can work out the oper-
atorU1(t). By choosing the evolution timeτ1 such that

J1τ1 =
π
√

2
, (16)

the resulting unitary operator reads

U1(τ1) =





















−1 0 0
0 0 e−iφ1

0 eiφ1 0





















. (17)

Thus, the action of the evolution operatorU1(τ1) on the states
in the logic subspaceSL is equivalent to that of the transfor-
mationUxz(φ1).

In order to ensure that the action ofU1(τ1) on SL is
purely holonomic, we need to check conditions (i) and (ii).
Condition (i) is satisfied since the subspace spanned by
{U1(τ1)|0〉L,U1(τ1)|1〉L} coincides withSL. Furthermore, as
H1 andU1(t) commute with each other, condition (ii) reduces
to 〈k|LH1|k′〉L = 0, wherek, k′ = 0, 1. Thus, both conditions
(i) and (ii) are satisfied, andU1(τ1) is therefore a one-qubit
holonomic gate in the subspaceSL, SL ⊂ SD.

Secondly, we demonstrate how to realize the one-qubit
holonomic gate

Uzx(φ2) = ZLeiφ2XL , (18)

whereφ2 is an arbitrary phase. In the computational basis
{|0〉L, |1〉L}, we have

Uzx(φ2) =

(

cosφ2 i sinφ2

−i sinφ2 − cosφ2

)

. (19)

To realizeUzx, we setJy
12 = J2 sin φ2

2 , Jx
13 = −J2 cosφ2

2 , and all

otherJx(y)
kl to zero, whereJ2 is a time-independent parameter

[31]. The Hamiltonian then reads

H2 = J2

(

Ry
12 sin

φ2

2
− Rx

13 cos
φ2

2

)

. (20)

Again SD is an invariant subspace ofU2(t) = e−iH2t. Ex-
pressed in the{|a〉, |0〉L, |1〉L}, the resulting time evolution op-
erator takes the form

U2(τ2) =





















−1 0 0
0 cosφ2 i sinφ2

0 −i sinφ2 − cosφ2





















(21)

by choosing the evolution timeτ2 such that

J2τ2 = π. (22)

Equation (21) shows that the action of the evolution operator
U2(τ2) onSL is equivalent to that ofUzx(φ2). Its holonomic
nature is demonstrated as above. Thus,U2(τ2) acts as a one-
qubit holonomic gate in the subspaceSL.

We note that any single-qubit operation can be written as a
combination of the following two types of rotations

Rz(θ) = e−i θ2σ
z
, Rx(ϕ) = e−i ϕ2σ

x
, (23)

whereθ, ϕ are rotation angles andσz, σx are Pauli operators.
Equations (13) and (19) imply

Uxz(0)Uxz(−θ/2) = e−i θ2 ZL , Uzx(0)Uzx(−ϕ/2) = e−i ϕ2 XL , (24)

whereXL andZL are just the PauliZ and PauliX operators
of the logical qubit. This proves thatUxz(φ1) andUzx(φ2) can
realize any single-qubit rotation.

Thirdly, we demonstrate how to realize a nontrivial two-
qubit gate. It is worth noting that the Hamiltonian in Eq.
(7) serves single-qubit gates but cannot directly be applied to
implement two-qubit gates. To implement a holonomic two-
qubit gate, four-qubit interactions are needed. Here, we gen-
erate the CNOT gate by means of the Hamiltonian,

H3 = J3

(

Rx
13R

x
45 − Rx

13R
x
46

)

, (25)

whereJ3 is a time-independent parameter [31]. The Hamil-
tonianH3 is obtained by settingJxx

13,45 = −Jxx
13,46 = J3 and all

other controllable four-qubit coupling constants to zero.The
choice ofJ3 is related to the evolution timeτ3. The require-
ment forJ3 or τ3 is

J3τ3 =
π
√

2
. (26)

In this case,SD⊗SD is a decoherence-free subspace, in which
the small subspace spanned by{|a〉 ⊗ |a〉, |0〉L ⊗ |0〉L, |0〉L ⊗
|1〉L, |1〉L ⊗ |0〉L, |1〉L ⊗ |1〉L} is an invariant subspace of the
HamiltonianH3. In the invariant subspace, the evolution op-
erator at timet = τ3 reads

U3(τ3) =







































−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0







































. (27)

Then, the CNOT gate is realized in the subspaceSL ⊗SL, i.e.,
span{|0〉L ⊗ |0〉L, |0〉L ⊗ |1〉L, |1〉L ⊗ |0〉L, |1〉L ⊗ |1〉L}. One may
verify that conditions (i) and (ii) are fulfilled too.U3(τ3) plays
a two-qubit holonomic CNOT gate in the subspaceSL ⊗ SL.

We have succeeded to construct two non-commuting holo-
nomic single-qubit gatesUxz andUzx and a holonomic CNOT
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two-qubit gate in DFSs of a system undergoing collective de-
phasing. The three gates compose a universal set of non-
adiabatic holonomic quantum gates in DFSs. It is worth not-
ing that the scheme proposed here is suitable for scaling up
the logic qubits. The Hamiltonian to realize the gates of
the n−th logic qubit has the same structure asH1 or H2 but
with the exchangingRx(y)

12 → Rx(y)
3n−2,3n−1 andRx(y)

13 → Rx(y)
3n−2,3n,

while the Hamiltonian to realize the CNOT gate between the
m−th and then−th logic qubits has the same structure asH3

but with the exchangingRx
13R

x
45 → Rx

3m−2,3mRx
3n−2,3n−1 and

Rx
13R

x
46→ Rx

3m−2,3mRx
3n−2,3n.

In summary, we have put forward a scheme for non-
adiabatic holonomic quantum computation in decoherence-
free subspaces. By using only three neighboring physical
qubits undergoing collective dephasing to encode one logical
qubit, we realize a universal set of quantum gates. Our scheme
combines the coherence stabilization virtues of decoherence-
free subspaces and the fault tolerance of geometric holo-
nomic control. Comparing with the previous schemes, our
scheme has removed the long run-time requirement in the adi-
abatic evolution and can avoid the extra errors and decoher-
ence involved due to long time evolution. Since the Hamilto-
nian in the scheme may be independent of time, our scheme
seems promising experimental implementation, which may
shed light on the applications of holonomic quantum compu-
tation in decoherence-free subspaces.
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