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Abstract 

We qualitatively extend a microscopic dynamical theory for the transverse confinement of 

infinitely thin rigid rods to study topologically entangled melts of flexible polymer chains. Our 

main result treats coils as ideal random walks of self-consistently determined primitive-path (PP) 

steps and exactly includes chain uncrossability at the binary collision level. A strongly 

anharmonic confinement potential (“tube”) for a primitive path is derived and favorably 

compared with simulation results. The relationship of the PP-level theory to two simpler models, 

the melt as a disconnected fluid of primitive-path steps, and a “super coarse-graining” that 

replaces the entire chain by a needle corresponding to its end-to-end vector, is examined. 

Remarkable connections between the different levels of coarse graining are established. 
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 Understanding the fascinating and complex dynamics of concentrated liquids of large 

flexible polymer coils has been an ongoing challenge spanning many decades. From the point of 

view of simulations the vast range of length- and time-scales associated with dense melts or 

solutions of long chains poses a formidable challenge to studying the long-time dynamics [1]. 

The theoretical difficulty is that the topological constraints arising from chain connectivity and 

uncrossability (“entanglements”) dominate intermediate and long-time elasticity, relaxation, and 

transport when polymers become sufficiently long and/or concentrated. These singular 

interactions, combined with the statistical nature of polymer conformations, render a first-

principles theory exceptionally challenging to formulate. 

 Since its introduction, the phenomenological reptation-tube model of deGennes, Doi, and 

Edwards [2, 3] has been the most common starting point for theoretical analysis. This single-

chain approach postulates transverse localization beyond a mesoscopic length scale, the tube 

diameter Td , as the dynamical consequence of the many interpenetrating chains on tagged 

polymer motion. The tube constraints are modeled by an infinitely strong (e.g., harmonic) 

confinement field, implying long-time diffusion proceeds only via anisotropic curvilinear 

motion. The reptation-tube theory and its diverse elaborations [4] are able to account for a 

remarkably broad class of experimental data, but it has recently been emphasized that the 

theory’s phenomenological nature can be a weakness, especially when evaluating proposed 

modifications to the model [5]. Particularly desirable is a theoretical explanation of the 

emergence of the localizing tube, the full spatially-resolved dynamic confinement potential, and 

the critical chain length that controls the crossover from unentangled to entangled behavior, eN  

[5, 6]. 
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In this Letter we adopt the classic Doi-Edwards (DE) picture of a polymer melt by coarse 

graining out the chain degrees of freedom on length scales smaller than some entanglement 

length eL  [3], but where we microscopically and self-consistently determine this length scale. A 

chain of N  segments is mapped to an ideal random walk of Z ≡ N / Ne  “primitive path” (PP) 

steps of length e eL Nσ= , where σ  is the statistical segment length such that 〈Ree 〉 = σ N  is 

the mean polymer end-to-end distance. This physical picture has been extensively used in 

simulation studies of the confining tube, where each chain is represented by rod-like PP 

segments, and topological entanglements correspond to the intersection of these rod-like 

segments [7, 8]. By qualitatively generalizing our theory for the dynamics of entangled rigid 

needles [9] to treat the topological interchain PP interactions, we construct a microscopic theory 

for the full tube confinement potential acting at the PP level. We also address long-time center of 

mass (CM) diffusion and end-to-end vector relaxation. Intriguingly, we find that the results from 

studying chains at the level of interacting PP steps are very similar to a “super coarse-graining” 

procedure [1] that replaces the entire coil with an uncrossable needle corresponding to Ree. 

 We first consider the transverse confinement of the PP segment α  on a tagged polymer 

in a melt with chain number density ρ , schematically depicted in Fig. 1. Transverse localization 

of segment α  is initially treated as a Gaussian distribution with a mean characteristic length 

(“tube radius”) lr  by self-consistently computing the long-time (localizing) part of the force-

force time correlation function associated with a tagged segment interacting with the PP steps of 

another chain. Generalizing the dynamic mean-field theory of Szamel for non-rotating needles 
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[10, 11], the formal expression for this localization length under quenched-reptation conditions 

(i.e., holding chain ends fixed) is: 

  4
rl

2 = −ρ
16π 2 (

I
I − Guα

Guα ) :
j ,k=1

Z

∑ dGv dγ dGrα 2

I
T∫ (α j)(Ωloc

† )−1
I
T (αk).   (1) 

Here Gui  is the orientation of the PP step i , Gv  and γ  describe the body-frame orientation of an 

instantaneous conformation of a second chain, Grα 2  is the CM separation between α  and the 

second chain, and the colon denotes a double contraction of tensorial indices. The collision 

operator 
I
T (α j)  encodes effective forces at the level of impulsive interactions; it enforces the 

uncrossability constraint between α  and the PP segment j  on the second chain. For an explicit 

form of   
I
T  [12] we treat the interacting PP steps as colliding needles. The “localized” two-chain 

evolution operator governing transverse PP motion is 

 Ωloc
† = −1+

rl
2

4 n,m=1

Z

∑ ∇ +
I
T (nm)( ) ⋅ 2

I
I − Gun

Gun − Gum

Gum( ) ⋅∇. (2) 

Equation (1) involves 2Z  time-dependent correlations between α  and the PP steps on 

the interpenetrating chain. We invoke two key approximations to make further progress: (i) the 

off-diagonal (i.e. j k≠ ) elements in Eq. (1) vanish, and (ii) when evaluating the integral over 

diagonal elements, the terms in Ωloc
†  with ,n m jα≠ ≠  can also be neglected. These 

approximations are consistent with our theory for infinitely thin, non-rotating 3D crosses [13], 

which was favorably compared with simulation [14, 15]. Physically, under quenched-reptation 

conditions we interpret (i) as neglecting simultaneous ternary and higher-order PP interactions 

and assuming that on average there are no angular correlations between steps at the PP level. 
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Approximation (ii) is consistent with idea that under quenched-reptation conditions the chain 

does not displace enough to change the pair of interacting PP steps over the time scales 

describing tube localization. 

 After the above approximations, Eq. (1) involves a sum over Z  identical terms. For a 

given PP step length eL , each of these terms can be analytically evaluated [9, 11, 13] (for details 

see Supplemental Material [16]). The textbook picture of PP coarse-graining assumes that Le  

(the entanglement length scale) is self-consistently set by the size of the confining tube, i.e., 

e e lN ArL σ= =  with 2A = . Written in terms of the invariant packing length, 

( )2 11( ) sp N ρσ ρ σ− −= ≡ , which quantifies how polymers fill space [17], the evaluation of Eq. 

(1) with 2A =  yields 

 rl = 4 2
Aπ F( A)

p → Le = 2rl = 10.2 p,  (3) 

where ( )F x  is described in the Supplemental Material [16]. The level of quantitative agreement 

between Eq. (3) and the experimental determination of 2 17.7lTd r p≡ ≈  in hundreds of flexible 

chain polymer melts [17] seems remarkable given the simplifying approximations employed. 

Equation (3) can be viewed as a first-principles derivation of the Lin-Noolandi conjecture for 

polymer melts, which asserts that a fixed, universal number n  of PP segments can fit inside a 

volume dT
3  [18, 19]. Our estimate of n = dT / p  is roughly a factor of two smaller than 

experiment, consistent with the expectation that quenching the rotational PP degree of freedom 

will overestimate the confining constraints.  
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 Just as in the needle theory, the nonlinear-Langevin-equation (NLE) approach allows one 

to go beyond the Gaussian analysis and construct the full anharmonic tube-confinement potential 

[9]. The NLE stochastic equation of motion for the transverse CM displacement ( )r⊥  of a PP 

step is −ζs

dr⊥

dt
−

∂
∂r⊥

Fdyn(r⊥ ) + δ fs = 0. Here, sζ  is the short-time (bare) friction constant, sfδ  is 

the corresponding white-noise random force, and ( )dynF r⊥  is a dynamic confinement potential (in 

units of kBT = 1) that follows from integrating the displacement-dependent transverse force, 

 2 2 .
( )

( ) eLF
r r F A r

f r⊥
⊥ ⊥ ⊥

⎛ ⎞− + ⎜ ⎟
⎝ ⎠

=  (4) 

For rigid needles the NLE extension has been quantitatively compared with experiments on 

heavily entangled f-actin solutions in the Gaussian and exponential-tail displacement regimes of 

the confinement potential [20]. For chains we predict that dynF  depends only on the ratio 

A = Le / rl ; Fig. 1 shows confinement potentials for three values of A .  

Normalizing P(r⊥ ) ~ exp[−Fdyn(r⊥ )] yields the probability distribution of transverse 

displacements on time scales when the polymer has equilibrated inside the tube but not yet 

relaxed via reptative motions.  Figure 2 presents a comparison between our predicted )(P r⊥  and 

the distribution of individual segments from their PP step in an atomistic simulation [21]. The 

simulations report displacements of individual segments or beads relative to the PP step 

containing the bead, whereas our theory predicts displacements of the PP itself. To perform the 

comparison we assume the bead displacement distribution can be modeled by taking /l er L  to be 

the ratio of the average bead displacement to primitive path length; Table 1 of Ref. [21] implies 
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0.18, .22/ 0l eLr ≈  for polyethylene and polybutadiene, respectively. The result A ≠ 2 arises 

because at the topological PP scale the chain has random walk statistics, but at the network-mesh 

scale of the beads there are still orientational correlations between consecutive entanglements 

[21]. This is consistent with recent studies that suggest a factor of ~ 2  difference between 

“topological” and “rheological” entanglement lengths (the latter determines the plateau modulus) 

[22]. Accounting for this value of A  leads to an accurate transverse confinement potential while 

only modestly changing the predicted tube diameter, dT ( A−1 = 0.2) = 8.24 p . 

 As seen in Fig. 1, the theory is only very weakly sensitive to the difference between 

A−1 = 0.18, 0.22 , but 1 0.5A− ≈  and 1 0.2A− ≈  are quite different. For clarity, in Fig. 2 only 

results for 1 0.2A− =  are shown. The agreement between theory and simulation using this value, 

while imperfect, is striking: the shape of the distribution quite accurate over all length scales, and 

the exponential tail is very well reproduced. Additionally, the simulations find that when 

displacement is normalized by r⊥〈 〉  the distribution is universal, and the theoretical anharmonic 

confinement potential is similarly universal, up to the very weak dependence on A  noted above. 

 Within the classic tube-model framework the terminal relaxation time is understood by 

arguing that a PP segment must take 2( / ) /T eL Nd N∝  diffusive “steps” to exit the tube and 

allow the mapped chain to fully randomize its orientation, leading to 3/ /rot Rouse e eN N N Nτ τ∝ ∝  

(where the standard Rouse time has been employed [3]). By invoking a Fickian perspective the 

CM diffusion constant would be 2 2/ /rot eL ND Nτ∝ ∝ . However, it is possible to extend our 

approach to predict these scaling relations. First, neglecting off-diagonal terms as above, the 

formal result for the isotropic long-time inverse CM diffusion constant (related to the total 
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friction constant that follows from integrating the force-force time correlation function of the 

chain) is 

 DCM
−1 = D0

−1 − ρ
24π 2

I
I : dGv dγ dGr12∫

I
T (ij)(Ωe

† )−1
I
T (kl)

i, j ,k ,l=1

Z

∑  (5) 

The PP coarse graining renormalizes the local friction constant, so the bare diffusion constant 

maps to Rouse diffusion of a single PP step of eN  beads, D0 → DR = Dmon / Ne , where monD  is 

the segmental diffusion constant. Equation (5) describes the effective diffusion of an 

instantaneous conformation of PP steps interacting with other instantaneous conformations of PP 

steps, subject to the constraint that the conformations neither change nor rotate. Explicitly 

solving Eq. (5) results in 1 2/ 0.54 /CM mon e eD D N N N−≈ − . Hence, we predict isotropic motion 

vanishes when 2 eN N≈ . 

 The geometric complexities of the many connected primitive paths precludes rigorously 

including anisotropic, reptative-like diffusion. For needles one can decompose the motion into 

fast longitudinal motion and constrained transverse motion, but for chains longitudinal motions 

along different PP steps add incoherently in the laboratory frame. However, one can invoke the 

physically-motivated idea that reptative diffusion is controlled by the coherent motion of PP 

steps due to chain connectivity and compute the renormalized friction constant (from the inverse 

effective diffusion constant) as an equally-weighted sum of the slowly-relaxing terms in Eq. (5). 

That is, the equivalent of the fast “longitudinal” mode is each PP step moving along its own axis 

(each term in the sum is thus contracted with the corresponding tensor (
I
I − Gui

Gui )  instead of 

rigorously contracting the entire effective diffusion tensor with a single lab-frame tensor as in 

Eq. (5)). Finally, we use Szamel’s theory for transverse PP motion [11] as a sensible surrogate 
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for the rotational relaxation of each diagonal term in Eq. (5). The self-consistent equation for the 

diffusion constant can then be evaluated as 

 
1

0

0 0

9.1 99 ,CM CM

e CM

D D DN
D N D D

H
−

⎛ ⎞⎛ ⎞
≈ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (6) 

where the function H  is defined in Ref. [11]. For N � Ne  this simplifies considerably: we find 

/ 0.567 /CM R eD ND N≈ , almost exactly the phenomenological result of DCM / DR ≈ Ne / 3N  [3]. 

 One might expect that a PP step on a tagged polymer likely only interacts with one PP 

step on another given entangled chain. Thus, to check our interpretation of the physical meaning 

of the off-diagonal terms discarded above, we consider mapping the chains to a fluid of 

disconnected primitive path segments.  This calculation is straightforward: the needle theory [9, 

11] is applied to Eq. (1) without the double summation where the PP density replaces the chain 

density, PP Zρ ρ= , and the T -operators govern the collisions of rods of length eL . The result is 

a dT  and effective confinement potential for a given primitive path step identical to the Eqs. 

(3,5). This concurs with the physical intuition that PP-level localization is “aware” of intra-chain 

connectivity only as a second-order effect on the timescale of interest. In contrast, disconnected 

PP transverse diffusion proceeds as 2 2
,0/ 18 / eD p LD π⊥ ⊥ ≈  for N � Ne , a factor of 2Z −  different 

from the chain CM diffusion constant obtained above. This incorrect result is expected, since by 

disconnecting the chain diffusive motion must be massively (and artificially) enhanced. 

 We now demonstrate that, surprisingly, the results from treating chains as connected 

primitive-path steps are quite similar to a truly minimalist mapping: replacing entire chains by 

single uncrossable needles. Replacing an entire chain with one degree of freedom is in the spirit 
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of recent “super coarse-graining” (SCG) methods that substitute a single fictitious particle for 

entire polymer chains [1]. Soft ellipsoidal particles are able to accurately predict long-time 

unentangled Rouse dynamics for short chains [23], but modeling interparticle interactions to 

recover both equilibrium structure and dynamics of long chains is very difficult [1, 24]. Here we 

investigate whether such a radical reduction in degrees of freedom is able to predict from first 

principles various entanglement phenomena. This approach is known to be sensible for studying 

the crossover from unentangled to entangled behavior from PP-simulation analyses of the 

topology-preserving network that defines the melt. Crucially, melts of chains with eN N<  are 

not entangled and a PP analysis returns a liquid of rigid rods with mean length equal to the 

average polymer end-to-end distance [25, 26]. In light of this, one would expect a SCG to 

correctly capture aspects of the entanglement crossover. 

 Our specific SCG is to identify the needle length with the average long axis of an 

instantaneous chain conformation, schematically illustrated in the upper cartoon of Fig. 1. 

Instantaneous polymer conformations are anisotropic; quantifying this anisotropy using 

simulation data from Ref. [27], a flexible chain is replaced by a needle of length /1.3L Nσ≈ . 

The dimensionless coupling constant of the needle theory becomes 3 / (1.481 )L N pρ σ≈ . The 

number of segments in an entanglement strand follows from our prior prediction for the 

crossover density 3 10.1eLρ ≈ , defined as the intersection between the independent-binary-

collision regime and the asymptotic reptative scaling behavior [9]. This value of the crossover 

density corresponds to having ~ 10  entangled chains within an end-to-end distance of a given 

chain, and implies ( )2 3244 / 244e sN p pσ ρ≈ = , very close to the experimental finding of 
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3313e sN pρ≈  [17]. The PP step length can be independently predicted by using the transverse 

localization length of the rod CM [9, 11] as a surrogate for the localization of a PP step. The 

result for N � Ne  is Le = 2rl = 16 2 / (πρL2 ) ≈ 9.36 p , very similar to the PP analysis presented 

above. Remarkably, as shown in Fig. 2, this SCG also results in an accurate tube confinement 

potential, although here the normalized potential is weakly / eN N -dependent, in apparent 

contrast with simulation [21]. The similarities between the two coarse graining schemes hint at a 

deep connection between the entanglement physics of flexible coils and rigid rods: a universal 

functional form describes the transverse confinement potential in both systems. This is 

reminiscent of the finding that PP analyses can provide a way to renormalize “loosely” to 

“tightly” entangled systems by examining the entanglement plateau modulus [28]. 

 In summary, we have constructed a first-principles microscopic theory for the dynamics 

of entangled random coil polymers at the primitive-path level, self-consistently renormalizing 

interchain PP interactions to construct the full anharmonic tube confinement potential. This 

responds to a major theoretical challenge in understanding highly entangled polymer chain 

dynamics [5, 6]. The close agreement between the theoretical confining potential and simulation 

at the PP level suggests a potential application of our work in improving slip-link model 

simulations by replacing the harmonic springs typically employed to mimic entanglement 

constraints [29]. Another potential application is a truly microscopic analysis of the 

entanglement plateau modulus, a long-standing and theoretically difficult issue associated with 

the relative importance of bonded and non-bonded stresses (or intra- and inter-chain forces) [3, 

30–32]. The usual Doi-Edwards assumption is that intrachain terms dominate, but simulations 



12 

 

find that the magnitude of the interchain terms is more compatible with the total contribution to 

the stress [32]. How these different stress-storage contributions change under deformation could 

be quite different, and our theory is in a unique position to microscopically evaluate this issue. 

 Finally, a potential advantage of our microscopic theory is that it provides a tractable 

conceptual and computational framework to implement specific modifications to the basic 

reptation-tube model. For instance, the effect of contour length fluctuations can be modeled by 

keeping the mean value fixed at the equilibrium length but stochastically sampling PP step 

lengths (or SCG mapped needle lengths) from a Gaussian distribution. Our prediction of 

anharmonic transverse confinement may have major implications for how the tube model is 

modified under nonlinear rheological deformations, where the question of how large 

deformations soften, or even destroy, the confining tube is a frontier issue [33 – 37]. We recently 

studied such effects for large-amplitude step-strains of entangled needle fluids [38], and plan to 

soon extend the calculation to entangled chains. 
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Figure 1. Transverse confinement potential for the PP mapping as a function of normalized 

transverse displacement (solid curves, A−1 = 0.5, 0.22, 0.18, left to right) and for the SCG 

needle limit with 10, 20,100/ , 200eN N =  (dashed curves, bottom to top). Cartoons below and 

above schematically depict the two mappings. 
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Figure 2. Transverse-displacement probability distribution compared with simulation [20] 

(points). Solid curves are theoretical predictions with 1 0.5, 0.2A− =  (left and right); dashed 

curves are the chain-to-needle mapping results for 6,1 00/ 80eN N =  (left and right). Inset: Log 

plot of PP distribution with 1 0.5, 0.2A− =  compared with simulation. 


