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Thermodynamic consistency in variable-level coarse-graining of polymeric liquids
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Department of Chemistry and Institute of Theoretical Science University of Oregon, Eugene, OR 97403, USA

Numerically optimized reduced descriptions of macromolecular liquids often present thermody-
namic inconsistency with atomistic level descriptions even if the total correlation function, i.e. the
structure, appears to be in agreement. An analytical expression for the effective potential between
a pair of coarse-grained units is derived starting from the first-principles Ornstein-Zernike equation,
for a polymer liquid where each chain is represented as a collection of interpenetrating blobs, with a
variable number of blobs, nb, of size Nb. The potential is characterized by a long tail, slowly decaying

with characteristic scaling exponent of N
1/4
b . This general result applies to any coarse-grained model

of polymer melts with units larger than the persistence length, highlighting the importance of the
long, repulsive, potential tail for the model to correctly predict both structural and thermodynamic
properties of the macromolecular liquid.

PACS numbers:

Relevant structural and dynamical properties of poly-
mer liquids take place over a large range of length (and
time) scales. The computational requirements often ren-
der it impractical or impossible to fully investigate such
systems with atomistic level simulations. To overcome
these limitations, many descriptions of polymeric liq-
uids with reduced internal degrees of freedom, or coarse-
grained (CG) descriptions, have been proposed. The
tremendous interest that CG methods have generated is
due to their capability of speeding up simulations, prob-
ing systems on larger length scales than conventional
atomistic simulations.[1–8]

The basis for any coarse grained description is the
specification of effective interaction potential energies or
forces between coarse grained units. Despite the grow-
ing interest in CG methods and their proven successes,
most CG models are still limited in their potential ap-
plication because of the empirical character of the effec-
tive interaction potentials upon which they rely. While
a few CG approaches have been formally derived,[9–12]
most, for example the Iterative Boltzman Inversion (IBI)
procedure where the mesoscale potential is optimized to
reproduce the total correlation functions, and sometimes
secondarily the pressure,[4] rely on numerical optimiza-
tion of their CG parameters through comparison with the
related atomistic simulations or with experimental data.
Unfortunately, numerically optimized CG potentials are
in principle neither transferable to different systems, nor
to the same system in different thermodynamic condi-
tions, and they can not assure consistency for properties
different from the ones against which their parameters
have been optimized[13]. This limits dramatically their
generality and convenience.

In this letter we present an analytical formalism for the
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potential describing the interaction between CG units,
for a model of a polymer liquid where each molecule is
represented as a chain of interpenetrating spheres with
variable size and number, in variable thermodynamic
conditions: we show that the CG model presented and
the related analytical potential, ensure structural and
thermodynamic consistency with the atomistic descrip-
tion. The model is general, as the potential is fully trans-
ferable and it is applicable to liquids of polymers with
different molecular structure. The analytical form of the
potential allows for the characterization of some general
features of how thermodynamic properties and structure
depend on the shape of the intermolecular potential be-
tween CG units.

In a polymeric liquid of monomer density, ρm, and
number of polymers n, the size of the polymeric chain
is defined by its radius-of-gyration, R2

g = Nl2/6, with l
the effective segment length between the center-of-mass
(coms) of two monomers, andN the number of monomers
in a chain. Here we are concerned about liquids of
polyethylene for which l = 0.152 nm. Each polymer is
represented as a chain of superimposing soft blobs, with
Nb the number of monomers in one blob, nb = N/Nb

the number of blobs in one chain and blob size char-
acterized by, Rgb = Rg/

√
nb, The correlation functions

that describe the static structure of the blob CG model
have been derived from the formal solution of a gener-
alized Ornstein-Zernike equation where monomeric sites
are assumed to be real sites, and CG sites are assumed
to be fictitious sites, in an extension of Krakoviack’s et
al. original approach,[14, 15] and including the thread
model polymer reference interaction site model (PRISM)
monomeric description.[16, 17] By assuming a Gaussian
distribution of the monomers inside a blob and monomer
interactions much shorter ranged than the size of the
blob, which are reasonable approximation for subchains
with Nb larger than the persistence length (for polyethy-
lene Nb ≥ 30), an analytical blob-blob total correlation

function, ĥbb(r), was derived, and shown to be in quanti-
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tative agreement with the total correlation function from
atomistic simulations.[17]

Starting from ĥbb(r) and given that the monomer di-
rect correlation function, cmm(r), has a range shorter
than the size of the CG unit, an analytical solution
of the CG potential is derived by approximating the
Fourier transform of cmm(r) by its zero wavevector value,
c0 = 4π

∫∞
0 r2cmm(r). The effective direct correlation

between blobs is given in Fourier space by

ĉbb(k) = −NbΓb

ρm

(Ω̂bm
av (k)/Ω̂

bb
av(k))

2

1 + nbΓb[Ω̂mm(k)− (Ω̂bm
av (k))

2/Ω̂bb
av(k)]

,

(1)
where Γb = −Nbρmc0 where c0 < 0, and Ω̂bm

av (k) is the
intramolecular correlation function between the coms of
a blob and a monomer, averaged over the chain and nor-
malized such that its value at k = 0 is equal to one. The
sharp peak around k = 0 leads to the enhanced sensitiv-
ity of the function to the quality of the approximations
used in the chain model, and made numerical solutions of
the potential necessary in our previous work. The total
correlation function in this blob description gives isother-
mal compressibility, κT = [kBTρm(1+Γb)/N ]−1, with kB
the Boltzmann constant and T the temperature, which
is consistent with the compressibility in the atomistic
description[16]. Intra- and inter-molecular pair distri-
bution functions and the structure factor, are consistent
with their atomistic counterpart for distances r > Rgb

and wave vectors k < 2π/Rgb.

Assuming that a coarse grained unit contains a num-
ber of monomers sufficiently large to follow a Gaus-
sian space distribution, and that the density and the
interaction strength are large enough that the product
Γb >> 1, the contribution to the inverse transform in-
tegral for large wavevectors (k >> 1/Rgb) is negligible
for r > Rgb. In this limit, the direct correlation for
k << 1/Rgb has the simple rational function limiting
form cbb(k) ∝ 1/(1 + ΓR4

gbk
4) as Γb → ∞. Approxi-

mating the effective direct correlation by this form for
all wavevectors introduces very little error, allowing for
a simple approximation for the functional form in real
space. The accuracy at intermediate Γ values can be
improved by taking this as the zeroth order term of an
asymptotic expansion in 1/

√
Γb about Γb → ∞.

The effective potential is then derived by applying the
approximation V bb(r) ≈ −kBT [c

bb(r) − hbb(r) + ln(1 +
hbb(r))] ≈ −kBTc

bb(r), the limiting form of the Hyper-
Netted Chain approximation valid when |hbb(r)| << 1
everywhere. This approximation holds for soft potentials
in the limit of high densities and long chains of interest
here.[18] For r > Rgb, the intermolecular blob potential,
which is the needed input for the mesoscale simulations
of the coarse-grained polymer liquid, is given by

V bb(r) ≈ kBT
[

(

45
√
2NbΓ

1/4

b

8π
√
3 4
√
5ρmR3

gb

)

sin(Qr)
Qr e−Qr

−
(

√
5Nb

672πρmΓ
1/4

b
R3

gb

)

[

(13Q3
rs(Qr − 4))cos(Qr)

+

(

945+13Q4

rs

Γ
1/4

b

)

rsin(Qr) + 945r

Γ
1/4

b

cos(Qr)
]

e−Qr

Qr

]

,

(2)
where Q = 51/4

√

3/2/(Γb)
1/4, Qrs = 51/4

√

3/2, and r
is in units of the blob radius-of-gyration, Rgb. When
nb = 1 Eq.(2) represents the effective potential between
the center-of-mass of two polymers in a melt.
Because the potential is formally expressed as a func-

tion of the molecular and thermodynamic parameters,
Eq.(2) is in principle general and applicable to polymer
melts in different thermodynamic conditions and with di-
verse macromolecular structures.
The range of the effective potentials between CG units

scales beyond the effective blob radius of gyration, Rgb,
and decays with the number of monomers per blob as

N
1/4
b . The observed scaling behavior can be explained

by considering that in a liquid the total effective correla-
tion between two sites (atomistic or CG), and its related
potential, can be regarded as “propagating” through se-
quences of direct pair interactions following the Ornstein-
Zernike integral equation theory. These many-body con-
tributions to the pair interaction are not simply addi-
tive, and once mapped into the OZ pair interaction, they
result in a slowly decaying tail. Because of the Gaus-
sian statistics that applies to the structure of long poly-
meric chains, the interaction between any intermolecu-
lar pair of blobs statistically propagates in the shared
volume as a random walk following the random path of
effective CG sites. Given that in the relevant volume
Vb ∝ R3

gb ∝ N
3/2
b l3, the number of effective CG sites is

of the order of n′
b ∝ ρmR3

gb/Nb ∝ N
1/2
b ρml3, which leads

to the observed scaling of N
1/4
b .

From the analytical form of the effective potential,
Eq.(2), the pressure of the system can be calculated ex-
plicitly. Specifically in the high density, long chain limit,
the pressure calculated in the virial route reduces to the
simple expression

P

ρckBT
≈ 1− Nc0ρm

2
. (3)

where ρc = ρm/N is the chain density. Eq.(3) is in agree-
ment with the monomer level description,[16] and does
not depend on the level of coarse-graining of the model
selected. It should be noted that because both the pres-
sure and the compressibility are consistent with monomer
level PRISM, the equations of state predicted from the
virial and compressibility routes will show the same small
inconsistencies between the routes, which are inherent to
the approximations in integral equation theory.[16, 18]
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The important point is that the pressure and compress-
ibility are left unchanged from the monomer level de-
scription by the coarse graining procedure on all levels.

To test the self consistency and the predictions of
the effective potentials we performed molecular dynamics
(MD) simulations of polymer melts using the LAMMPS
simulation package,[19] in parallel on the SDSC Tres-
tles cluster accessed through the XSEDE project. Sim-
ulations were performed both at the atomistic level, by
adopting the traditional united atom model (UA-MD)
with the established set of UA potentials (intermolec-
ular Lennard-Jones,[25, 26] harmonic bonds and angle
potentials) and at the coarse-grained mesoscale level
(MS-MD) where each chain was represented as a col-
lection of soft colloidal particles. MS-MD simulations
for the nb = 1 case have been described previously[20–
22]. To extend the model to cases where nb > 1, the
effective bond between adjacent blobs was taken to be
Vbond = 3kBTr

2/(8R2
gb) + V bb(r) + kBT ln(1 + hbb(r)),

which enforces the correct distributions between adja-
cent blobs[17], and an angle potential between sequential
triples on each chain which likewise enforces the correct
angular probability distribution.[23] Blobs more than two
apart on each chain were taken to interact via the inter-
molecular pair potential V bb(r) of Eq.(2). All Mesoscale
simulations used here are performed in the NVE (micro-
canonical) ensemble. Values of the c0 parameter, entering
Γb in Eq.(2) and the MS-MD, were taken from the UA
simulations for short chains. For systems with large N ,
which were too slow to relax to be accessible through UA-
MD, the c0 parameter was extrapolated from the avail-
able UA data at small N at the same monomer density,
using the form predicted from monomer level numerical
PRISM theory, c0 = a+ b/N , with a and b optimized pa-
rameters. The values of c0 obtained from this procedure
were found to be generally consistent with calculations
using long-established numerical monomer level PRISM
models when an attractive part to the monomer potential
is included.[16]

Figure 1 displays the effective intermolecular force
(−∂V bb/∂r) between blobs, comparing the numerical so-
lution of the potential with the approximate expression,
Eq.(2). The approximate expression represents correctly
the force in real space going from the peak to the long
tail, which is the essential information needed for the
correct calculation of thermodynamic properties. The
inset in Figure 1 shows the normalized Virial density
(N−2r3F bb(r)), whose integral is proportional to the
pressure, and which can be seen to be dominated by
the tail region of the potential (r > Rgb). The peak
of the force decreases with increasing blob length, Nb, at
constant density, ρm, but its range increases in such a
way that the Virial integral ultimately reaches a plateau,
which corresponds to the leveling off of the pressure, as
shown in Figure 2. The inset of Figure 1 also shows that
the effective potential has a small attractive part at long
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FIG. 1: Force curves for the nb = 1 model (solid lines) and the
approximated Eq.(2) (squares) for (top to bottom) N = 100
(red), N = 200 (blue), N = 500 (green), and N = 1000
(brown), along with force curves for models with a fixed blob
length, Nb = 50, and increasing numbers of blob (dashed
lines): nb = 2 (red), nb = 4 (blue), nb = 10 (green), and nb =
20 (brown). Inset: Normalized Virial density (N−2r3F bb(r))
for the numerical forces and their analytical forms for nb = 1.
All systems are at 400K and density ρm = 0.03355Å−3 .

range: such an attractive component is a necessary con-
dition for a stable liquid to form, as a gas phase would
be the state of lowest free energy at any temperature for
a system of purely repulsive particles with no additional
constraints. This attractive contribution is partially of
entropic origin and partially due to the attractive com-
ponent of the inter-monomer potential. Figure 2 shows
that all simulations of the same system, independent of
the level of coarse graining, generate not only consistent
structure, as seen before, but also consistent pressure.

The scaling of the potential is a property of the rep-
resentation; increasing the number of monomers in each
coarse grained unit on each chain, with a fixed system
density and monomer interaction, results in an effective
potential that grows long-ranged because it captures the
average effect of the many-polymer correlations mapped
into the effective pair interactions. This is a consequence
of the fractal dimension of polymers, which is of order
two, as blob volume increases with Nb faster than the
chain can fill it, leading to an increasing with Nb of the
level of chain interpenetration. If however, melts of in-
creasingly long chains at the same density are represented
by increasing numbers of soft blobs of fixed Nb, the range
of the potential between blobs limits to a fixed value with
increasing chain length as the direct correlation parame-
ter c0 approaches its limit.

Analysis of these results shows that the range of the
effective potential is highly density dependent, both ex-
plicitly and indirectly through the direct correlation pa-
rameter, c0, as shown in Figure 3. Also reported for
comparison is the force generated from the potential of
mean force, which is a very poor representation of the
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FIG. 2: Pressure measured from simulations with input CG
forces from Figure 1, where nb = 1 (orange squares connected
by dashed guide lines), and Nb = 50 with nb > 1 (open
blue circles). Also depicted are UA-MD simulations (green
X symbols) for systems which relax fast enough for UA-MD
to be feasible (N ≤ 200). Data are collected for increas-
ing degree of polymerization N , at the same values of N as
Fig.(1). All simulations were performed at 400K and density
ρm = 0.03355Å−3.
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FIG. 3: Numerical force curves for N = 100, nb = 1 models
of PE with increasing densities (bottom to top) 0.03226Å−3

(red), 0.03355Å−3 (blue), 0.03441Å−3 (green), 0.03656Å−3

(black), and 0.03871Å−3 (gray), along with corresponding
mean force curves (dashed lines). Insert: detail of the at-
tractive contribution to the force (densities increase left to
right). All systems are at 400K

“real” force at high densities.

Finally Figure 4 compares predictions of pressure as a
function of density for two samples with increasing chain
length, i.e. N = 44 and N = 100. Data from MS-MD
of the CG soft-blob representation show excellent agree-
ment with data from UA-MD in the range where UA-MD
were performed. The agreement appears to be indepen-
dent of the level of CG representation that is adopted, as
soft-spheres and chains of soft-blobs have consistent pres-
sure across the different levels of coarse graining. The
calculations are dominated by the presence of the long-
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FIG. 4: Pressures measured in MS-MD simulations versus
density, for N = 44 (triangles) and N = 100 (circles), per-
formed with effective potentials where c0 is determined from
UA-MD simulations. Also reported are values from the cor-
responding UA-MD simulations (crosses for N = 44 and stars
for N = 100). All simulations were performed at 400K Con-
necting lines are added as a guide to the eye.

ranged tail of the potential, further validating the pro-
posed CG description. The range of separations over
which the effective potential must represent the aver-
age of many-polymer effects increases dramatically with
density. While all levels of representation accurately re-
flect whole-system thermodynamic averages and struc-
tural pair correlations, a coarse grained description may
be unable to resolve processes below the length scale of
the potential tail, due to this averaging effect.

The difference between the scaling predictions for the
effective potential and the potential of mean force also
has very important implications for theories of polymer
melts. The strength of the potential of mean force,
w(r) = −kBT ln(1 + hbb(r)), is found to scale for long
chains, or large blobs, and high densities as 1/(ρm

√
N)

and its range as N1/2 with c0 becoming irrelevant and
w(r) vanishing in the infinite chain limit. Use of the w(r)
in thermodynamic relations therefore results in vanish-
ing energies and pressures in the long chain/high density
limit, which would imply the irrelevance of intermolecular
interactions and allow reduction of the system to a single
chain problem. While the effective pair potential at con-
tact, V bb(0), still vanishes in the infinite chain limit, its
tail increases in such a way that the Virial integral does
not vanish. Likewise the average effective energy in the
system also does not vanish, and furthermore both de-
pend on the monomer level direct correlation, and there-
fore on the monomer interaction potential. This implies
that even in the infinite chain limit, intermolecular po-
tentials do not become irrelevant, and therefore cannot
generally be neglected, as it is conventionally done in the
description of polymer melt dynamics.[27]

In this letter we have presented an analytical character-
ization of the soft pair potentials that arise in high level
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coarse grained descriptions of interpenetrating polymer
melts, i.e. for soft-sphere and chains of soft-blobs coarse
graining mappings of polymer melts. The form of the
potential and the pressure are obtained directly in terms
of parameters from the monomer level theory, without a
need for phenomenological correction forms in the poten-
tial and numerical optimization procedures. The effective
potentials for these CG models show characteristic long-
ranged “tails” that scale non-trivially with chain length,
density and monomer interaction strength. This family
of CG models guarantees the consistency of the struc-
ture and thermodynamics of the macromolecular liquid
in any level of soft representation, which is relevant in
the modeling of complex polymeric liquids, as well as
in the design of reliable multiscale modeling approaches
to capture relevant phenomena that may occur on many
different length scales. Dynamical properties will be ac-
celerated in the coarse-grained representation, and will
have to be properly rescaled to reconstruct the realistic
dynamics.[22]
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