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Abstract  

 

The capsids of icosahedral viruses are closed shells assembled from a hexagonal lattice of 

proteins with 5-fold angular defects located at the icosahedral vertices. Elasticity theory 

predicts that these disclinations are subject to an internal compressive pre-stress, which 

provides an explanation for the link between size and shape of capsids. Using a 

combination of experiment and elasticity theory we investigate the question of whether 

macromolecular assemblies are subject to residual pre-stress, due to basic geometric 

incompatibility of the subunits. Here we report the first direct experimental test of the 

theory: by controlled removal of protein pentamers from the icosahedral vertices, we 

measure the mechanical response of so called ‘whiffleball’ capsids of Herpes Simplex 

Virus, and demonstrate the signature of internal pre-stress locked into wild type capsids 

during assembly.   

 

 

Self-assembly of macromolecules is generically driven by an interplay between the 

geometry of the subunits and the attractive physical interactions between the subunits. Subtle 

tuning of this interplay, e.g., by mutation and/or modification of the chemical environment, can 



activate or block the assembly process, as in amyloid fibril assembly [1], or result in structural 

polymorphism, as in the assembly of the protein shells (capsids) of viruses [2,3]. Because of their 

robust assembly and regular icosahedral symmetry, spherical viral capsids have been an ideal 

system for exploring the physical principles governing macromolecular assembly. Coarse-

grained molecular dynamics studies have shown that icosahedral capsid assembly can be 

successfully simulated through precise design of subunit interfaces and local assembly rules for 

smaller viruses [4-7]. However, as capsid size and the number of units grows, assembly 

simulations suffer a “closure catastrophy,” becoming kinetically trapped in “monster particle” 

states, i.e., misassembled aggregates and open shells [5]. Thus, the key question remains open: 

beyond local rules, what are the physical mechanisms that guide or control the assembly of large 

macromolecular aggregates?  

Lidmar, Mirny, and Nelson (LMN) approached this question building onto the framework 

of continuum theory of thin elastic shells [8]. They describe how pentamers located on 5-fold 

icosahedral vertices are predicted to behave as defects (disclinations) in an otherwise hexahedral 

lattice of capsid proteins. According to elasticity theory, these defects inject a state of pre-stress 

into the shell, because the naturally 6-fold coordinated subunits are geometrically incompatible 

with the 5-fold vertex topology. The resulting strain causes the icosahedral vertices to “buckle” 

outward, and for larger viruses this leads to a facetted, aspherical capsid shape. Yet, the elastic 

energy cost of inserting a pentamer at the proper location of an icosahedral vertex of a growing 

shell is always higher than the cost of inserting a hexamer, as recently shown by Morozov et al. 

[9]. This lead to the suggestion that so called “whiffleball” capsids [10], with the 12 pentamers 

missing, might serve as assembly intermediates, which are then subject to pentamer insertion as a 

final assembly step. While such an assembly pathway might be plausible for smaller capsids, the 

cost of a disclination increases with capsid size, making pentamer addition as a final step 

prohibitive in sufficiently large capsids. Thus the fact that large, highly facetted viruses do 

spontaneously assemble prompts the question of whether their capsids might relax the defect-

induced pre-stress,   

To address the general question of the presence and impact of pre-stress on 

macromolecular assemblies, we perform quantitative experimental testing of the elasticity theory 

of viruses, and assess whether capsids are indeed subject to incompatibility-driven pre-stress.  

Because the internal state of stress or force in a capsid shell is not directly measurable, we 



consider instead an alternative approach. We assess the amount of pre-stress in a viral shell 

indirectly by comparing the measured mechanical properties of native capsids with those of 

“whiffleball” capsids [10,11], which are indistinguishable from the former except that they lack 

pentons (Fig. 1a).  Following the LMN theory [8], we model the capsids as elastic icosahedral 

shells, with an energy functional  
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with bending contributions from the mean curvature, H , and stretching contributions from the 

(nonlinear) Green strain, Eij , defined relative to the icosahedral reference state. The most notable 

consequence of the pre-stressed disclinations is a “buckling” transition controlled by a single 

dimensionless parameter, the Föppl-von Kármán (FvK) number, γ = YR2 κ , representing the 

ratio of in- and out-of-plane stiffnesses of the shell in terms of the 2-D Young’s modulus Y  

(common scaling factor for 2-D Lamé coefficients λ  and μ ), bending modulus κ , and shell 

radius R  [8]. This transition is manifested in an abrupt increase of the asphericity of the shell, 

〈(R − 〈R〉)2 〉 / 〈R〉2, from zero to a finite value as γ  is increased above a threshold value γ ≈ 150 . 

Because pentons represent disclination cores, it follows that their removal should reduce the pre-

stress, and therefore the driving force for buckling of the icosahedral vertices. We obtain 

equilibrium configurations of both intact and whiffleball shells by relaxation of the energy, 

computed numerically by finite element approximation on triangular meshes, using C1 -

conforming subdivision-surface shape functions for bending, and Lagrange interpolation for 

stretching [12,13]. The triangular finite-element meshes were generated by recursive subdivision 

of the Caspar-Klug T-number triangulations, to obtain convergence to the continuum limit, 

which, for an intact shell, is insensitive to the base T-number. Whiffleball shells are assigned 

traction-free boundary conditions along the edges of penton holes, which are sized according to 

capsid base T-number.  

Figure 2 plots the asphericity vs. γ  of intact shells and T=16, T=7, and T=4 whiffleball 

shells, as computed by finite element analysis (FEA). At fixed 150γ >  (above the buckling 

threshold) removal of pentons leads to a reduction in asphericity. The insets of figure 2 show the 

relaxed shape of shells with  γ = 1000  contoured by the strain energy density. The figure 



demonstrates the predicted decrease in asphericity for the whiffleballs, seemingly indicating that 

the softening of the buckling transition induced by penton removal is associated with a reduction 

in the internal stresses in the shell. However, if one determines the asphericity of the intact 

capsids without taking into account the presence of the pentons (dashed lines in fig. 2) one sees 

that the difference between intact capsids with ‘invisible’ pentons and whiffleballs vanishes for 

most regimes. Examination of cryo-electron microscopy reconstructions of three experimentally 

observed “whiffleball” capsids of the T=16 Herpes Simplex Virus type 1 (HSV1) and the T=7 

capsids of HK97 and P22, all of which are identical from native capsids except that they have 

holes at the 12 icosahedral vertices [10,14,15], shows a seemingly qualitative agreement with the 

prediction that whiffleball capsids are less faceted than their intact counterparts. However, as 

with the simulations, also here there is a catch as difference maps between P22 intact and 

whiffleball capsids predominantly show differences at the location of the missing pentons, not at 

the hexons [14]. These combined results reveal that change in shape after penton removal is 

inconclusive as a gauge for pre-stress. 

As an alternative experimental test of the prediction of pre-stress, we assess instead the 

effect of penton removal on the global mechanical properties of capsids. Specifically, we 

performed Atomic Force Microscopy (AFM) nanoindentation experiments [16,17] on intact and 

whiffleball capsids of HSV1, as described previously (See [18] for materials and methods) [19]. 

The individual indentation curves and their average are shown in figure 3. From the initial 

deformation, we measure spring constants of 0.174 +/- 0.002 N/m for the whiffleball capsids and 

0.35 +/- 0.01 N/m for the intact capsids (errors are standard error of the mean, SEM). The large 

(irreversible) drops in the force mark failure events. The general trend is that whiffleball particles 

show a more catastrophic failure than intact capsids. The relative drop in the force is 55 ± 7% for 

the whiffleball capsids whereas it is 39 ± 8% for the intact capsids. The larger drops in force for 

the whiffleballs are also accompanied by larger holes remaining after nanoindentation (Fig. 1). 

 In comparing the experimental data to FEA we choose a FvK number of 1500 as 

representative of the contiguous shell of a HSV1 capsid [16]. Figure 4 shows the indentation 

behavior predicted by theory for intact and whiffleball particles. The main graph shows force 

indentation curves of icosahedral particles using the LMN theory, which allows for pre-stresses 

due to the disclinations [8]. The "intact" curve is for a closed icosahedral shell (no holes), and the 

T=16, 7, and 4 cases are shells without pentamers, with holes that are relatively larger for smaller 



T-numbers. Three similarities of the theoretical and experimental curves (Fig. 3) are apparent: (i) 

the critical force at which the particle buckles/fails is for whiffleball particles lower than for 

intact particles, (ii) the indentation at the critical force for whiffleball particles is higher than for 

intact particles, (iii) after an initial similar linear deformation (up to an indentation of ~5% of the 

particle radius), the intact capsids stiffen whereas the whiffleball capsids deform nearly linearly, 

up to the critical force. Equating the experimental stiffness values to the model with γ = 1500 and 

R = 49.5 nm [16], we extract values of Y = 3200 pN/nm and κ = 5300 pN*nm for the intact 

capsid and Y = 2400 pN/nm and κ = 4000 pN*nm for the whiffleball shell. Assuming an 

effective mechanical thickness of h = 4 nm we obtain 3D Young’s moduli of E = Y/h = 0.80 +/- 

0.02 GPa for intact capsids and E = 0.60 +/- 0.01 GPa for the whiffleball (as indication shown 

with the same relative errors as for the experimentally obtained spring constant). This value for 

the intact capsids is close to previous estimations of E [18]. Furthermore, it shows that the 

experimentally observed decrease in spring constant going from intact to whiffleball is reflected 

by the decrease in modulus in the simulations. However, it is not a priori obvious that the moduli 

will be affected by penton removal and these results yield that the whiffleball capsids as 

measured by experiment are 25% softer than would be predicted by the model if the elastic 

moduli were unaffected by penton removal. This decrease in intrinsic stiffness will be related to 

the fact that upon experimental penton removal, also some of the triplex proteins that connect the 

capsomeres in HSV1 are removed, specifically those that are immediately adjacent to the 

pentons [15]. This triplex-removal effectively increases the size of the hole at the vertex. By 

comparing figure 2 and 4 one can see that the simulations predict a consistent trend: a larger drop 

in elastic stiffness for larger holes at the vertices. In addition, one can observe in the curves that 

the experimental shells fail before the simulated shells buckle. This resembles the effect of 

imperfections in premature initiation of buckling failure of macroscopic structures [20], 

however, quantitative comparisons of buckling/failure remain suspect as we do not have a clear 

justification for interpreting the experimental failure as a buckling transition.  

 While agreement with the experimental data provides a measure of validation for the 

elasticity theory, it does not cleanly identify prestress as the direct cause for the reduced stiffness 

of the whiffleball shells. For a rigorous test of the presence of pre-stressed disclinations in 

icosahedral shells we also examine the predictions of elasticity theory for spherical whiffleball 

shells without pre-stress. The insets in figure 4 show the normalized or structural stiffness, i.e., 



the derivative of the force indentation curves, dF
dζ

Yκ
R

, for icosahedral (pre-stressed) and for 

spherical (stress-free) shells. It demonstrates that the reduction in structural stiffness, averaged 

over the range  0 ≤ ζ ≤ R , for initially stress-free shells is significantly smaller (< 10%) than for 

shells with initial pre-stress ( ≈ 35%). This is in large part due to the nonlinear force response of 

intact shells: stress-free shells soften as indentation is increased, while prestressed shells stiffen 

consistent with the experiments. These results provide strong support for the conclusion that 

prestress does indeed exist in T=16 HSV1 capsids. If HSV1 were stress-free, the T=16 shell 

model would predict that penton removal would lead to such a small change in stiffness so as to 

be unobservable to within experimental accuracy. Figure 3 shows a clear effect of penton 

removal and the actual experimental reduction in spring constant is ~50%. The model also 

predicts a large change in structural stiffness: 35%. This structural difference in stiffness is 

normalized on the relevant elastic parameters, i.e. this is the change in stiffness which would 

occur when Y, κ and E do not change. However, the experimental results show a bigger change, 

indicating that the intrinsic stiffness (i.e. Y, κ and E) is also changing. By comparing the model 

with the experiments, we have, in the previous section, observed a 25% reduction in the elastic 

modulus. So putting things together we now have a reduction of 25% in intrinsic stiffness and 

35% in structural stiffness going from intact capsids to whiffleballs. As the intrinsic and 

structural stiffness couple into the overall stiffness k, as measured experimentally, this yields the 

50% reduction in spring constant we observe in the nanoindentation experiments. To conclude 

this section, we have shown that the large experimental change in stiffness is consistent with a 

pre-stressed T=16 shell model, and inconsistent with a stress-free spherical T=16 model. 

 Our current findings described here stand in apparent contrast to a previous study of the 

mechanical properties of capsids of a smaller virus, Hepatitis B Virus (HBV), which assemble in 

vivo as well as in vitro with triangulation numbers of either T=3 or T=4. Comparison of theory 

and experiment for HBV suggested that the anisotropy or orientation-dependence of the 

indentation response was inconsistent with pre-stresses at the five-fold disclinations [21], raising 

a challenge for the predictions of elasticity theory as applied to smaller viruses. Because 

individual protein dimensions and interactions tend to persist within a narrow range of values 

across the spectrum of virus families, smaller capsids tend to have smaller FvK numbers, and 

should therefore, according to theory, have correspondingly more spherical shapes. The Föppl-



von Kármán number of HBV was estimated to be less than 400 [21], close to the buckling 

transition. Figure 2 shows that the large differences between intact and whiffleballs are only 

prominent above γ ~ 500. This illustrates an important distinction: while pre-stress is important 

for producing the aspherical shapes of large FvK viruses, it is more or less irrelevant for small 

capsids. The mechanical properties of the latter class, for instance HBV, are more likely to be 

governed by the discreteness of the protein shell [21]. As capsid size gets larger, pre-stress has an 

increasingly more dominant role in determining the mechanical properties as it affects the overall 

morphology.  

 By selectively removing the pentons of icosahedral viral shells and comparing their 

mechanical properties to intact shells we have experimentally validated the LMN theory on the 

presence of pre-stress. Especially for large viruses this pre-stress is apparent showing that their 

assembly process is unlikely to occur via a whiffleball intermediate state as that would require 

the pentons to be in a relaxed state to avoid large energy penalties during self-assembly. 

Alternative assembly pathways, for instance starting with a nucleus of 5-fold symmetry as 

recently observed for HBV and Norwalk virus [22], could also apply for larger T-number capsids 

as this would lock-in the pre-stress from the start of assembly.   
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Figure legends 

 

Fig. 1 HSV1 B capsids deposited on their 3-fold symmetry axis. The top AFM images (a&b) are 

from a whiffleball capsid and the bottom images (c&d) are from an intact particle. The capsids 

are shown in a 3D-perspective rendering and the white arrows in a & c indicate the icosahedral 

vertices. One can see three holes in image (a) at the places where the pentamers are removed. 

The particles are shown before (a&c) and after (b&d) nanoindentation. The insets in b & d show 

the height profile (as taken along the grey arrows) before and after indentation, where x denotes 

the lateral distance and z the particle height. 

 

Fig. 2 Asphericity as function of FvK number computed by finite element analysis for “intact” 

(i.e., closed) and “whiffleball” icosahedral elastic shells. Dashed lines show results using the 

shape of relaxed intact shells, but ignoring the pentons, i.e., making them “invisible.” Insets 

show the relaxed equilibrium shapes for shells having γ = 1000, with color contours indicating 

stretching energy density. Results for closed shells are marked “intact”. Whiffleball shells are 

labeled by the Caspar-Klug T-number defining the structure of the hexons and the removed 



pentons. For smaller T-numbers the holes at the pentameric sites are larger in proportion to the 

average shell radius. For the analysis, the finite-element discretizations were refined to a 

sufficient level that the results were insensitive to further refinement. 

 

Fig. 3 Indentation curves (thin lines show individual curves) and their averages (thick lines) for 

whiffleball T=16 capsids (number of particles n=9) and intact T=16 capsids (n=5, inset) along 

the three-fold symmetry axis. Both averages are shown in both graphs; Only the beginning of 

these curves are shown. The negative slope following on failure of most particles is ~0.05 N/m, 

which equals the spring constant of the used cantilever and represents the relaxation of the 

cantilever after a breaking event.  

 

Fig. 4 Normalized, simulated force-indentation responses of intact and whiffleball icosahedral 

(pre-stressed) shells with γ = 1500. Whiffleball shells with triangulation numbers T=16, T=7 and 

T=4, have structures depicted in figure 2. Indentation loading was oriented along the 3-fold 

symmetry axis of the shells. The top left inset shows normalized stiffnesses, i.e., the derivatives 

of the curves in the main plot, corresponding to prestressed icosahedral shells. The bottom right 

inset shows the stiffness curves for shells with spherical (stress-free) reference states, revealing 

dramatically smaller differences between intact and whiffleball shells than are seen for pre-

stressed icosahedral shells. 
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