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Here we establish the systematic existence of a U(1) degeneracy of all symmetry-allowed Hamil-
tonians quadratic in the spins on the pyrochlore lattice, at the mean-field level. By extracting the
Hamiltonian of Er2Ti2O7 from inelastic neutron scattering measurements, we then show that the
U(1)-degenerate states of Er2Ti2O7 are its classical ground states, and unambiguously show that
quantum fluctuations break the degeneracy in a way which is confirmed by experiment. The degree
of symmetry protection of the classical U(1) degeneracy in Er2Ti2O7 is unprecedented in other ma-
terials. As a consequence, our observation of order-by-disorder is unusually definitive. We provide
further verifiable consequences of this phenomenon, and several additional comparisons between
theory and experiment.

Models with frustrated interactions often display an
“accidental” ground state degeneracy in the classical
limit. Within mean field theory (MFT), the classical
degeneracy extends to one of the free energy, even for
quantum spins. Theoretically, quantum or thermal fluc-
tuations may lift this degeneracy and thereby select and
stabilize an ordered state. This phenomenon is called
“order-by-disorder” (ObD) [1–3], and has been discussed
theoretically for more than three decades.

While ObD could therefore be expected to arise fairly
frequently, it has so far escaped indisputable experimen-
tal detection, to a large extent because of the difficulty
of distinguishing fluctuation effects from those of weak
interactions that explicitly break the degeneracy at the
mean-field level (see Supp. Mat. [4] for a discussion of
ambiguities in the most accepted experimental claims [5–
7] of ObD). Hence, to unambiguously identify ObD in a
material, we need both a detailed knowledge of the ma-
terial’s Hamiltonian and a proof that a mean field degen-
eracy exists which is robust to weak perturbations. We
provide both here for the rare earth pyrochlore Er2Ti2O7,
and confirm the ObD physics through confrontation of
the theoretically-predicted order with experimental ob-
servations.

Prior work identified Er2Ti2O7 as an “XY” antiferro-
magnet with an ordered ground state [8–15] in zero field.
ObD was actually already insightfully suggested for it
long ago [8, 9], but based on an ad-hoc model which led
to several significant conflicts with experiment, and as
such Er2Ti2O7 has been regarded as a long-standing puz-
zle. Recently ObD was revisited [15], but our model and
theory go well beyond existing work and resolve all the
prior enigmas. Relation to prior work on this material
will be returned to at the end of the paper.

We proceed as follows. First, we prove that, at the
mean-field level, any symmetry-allowed Hamiltonian for
any system of effective S = 1/2 spins on the pyrochlore
lattice, quadratic in the spins, possesses a U(1) degener-
acy, which can only be broken by fluctuations or disorder.

We next extract the parameters of the nearest-neighbor
model for Er2Ti2O7 from the fits of linear spin wave the-
ory with single-crystal high-field inelastic neutron scat-
tering, show that MFT describes Er2Ti2O7 well, and that
the U(1) degeneracy of its model applies to its zero-field
ordered phase. We then calculate the splitting due to
quantum fluctuations, and show that the selected state
is compatible with zero-field measurements. We also pre-
dict correspondingly a spin-wave gap of ≈ 260 mK (and
other effects) which may be measured in future experi-
ments.

General U(1) degeneracy: We project the Hamiltonian
to that of effective S = 1/2 quantum spins describing the
magnetic doublet of each rare earth ion on the pyrochlore
lattice. The most general form of H involving two-spin
interactions is H = 1
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component of the spin on the site i, in the global (x̂, ŷ, ẑ)
basis. (Implicitly, the Jµνij are of course constrained by
crystal symmetry – see Refs. 16 and 17 for details of the
constraints for nearest-neighbor exchange.) The mean
field (variational) free energy FMF = F0 + 〈H − H0〉,
where H0 and F0 are the Hamiltonian and free energy for
a fiducial system of decoupled spins with applied Zeeman
fields, is
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where β = 1/(kBT ), where T is the temperature and kB
is Boltzmann’s constant, and where mi = 〈Si〉, mµ

i =
〈Sµi 〉 and thus |mi| ≤ 1/2. The entropic part of the
free energy, i.e. the last term of Eq. (1), is obviously
independent of the orientation of the magnetization mi.
Now consider the Ansatz

m0
j (α) = ρRe

[
e−iα

(
âj + ib̂j

)]
, (2)

where ρ ∈ [0, 1/2], α ∈ [0, 2π[, and âj and b̂j are the local
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x and y unit vectors, respectively (see Supp. Mat. [4]),
which depend only upon which of the four sublattices the
site resides. In words, Eq. (2) describes translational in-
variant states (no unit cell enlargement) where all spins
make the same angle with their local x-axis. (Note that
this spin configuration carries no total net moment.) This
is the Γ5 manifold of ground states first identified in
Ref. 8 for Er2Ti2O7. Now, let Φ = ρ eiα = Φ1 + iΦ2,
Φ1,Φ2 ∈ R. Up to an unimportant constant, the free
energy for the Ansatz Eq. (1) as a function of Φ reads

F 0
MF[Φ] = aΦ2 + a∗(Φ∗)2 + b|Φ|2, a ∈ C, b ∈ R, (3)

since Eq. (1) is quadratic in the spins. Cubic symmetries
then impose that a = a∗ = 0, so that F 0

MF depends on
|Φ| only, i.e. solely on |m0

i |. Indeed, under the three-fold
rotation along the [111] axis, one finds α→ α+ 2π/3, or

Φ→ e2iπ/3Φ ⇒ a = 0, (4)

since F 0
MF should remain invariant under the above trans-

formation. Thus, within MFT, the degeneracy is present
for arbitrary two-spin interactions [18]. Similar argu-
ments show that the leading order term splitting the de-
generacy in the free energy and consistent with cubic
symmetry is

F6 = −c (Φ6 + (Φ∗)6), (5)

with some real constant c. Since there is no general ar-
gument to make c vanish, we conclude that the U(1) de-
generacy is an artifact of the approximations introduced
so far. In MFT, it is, however, remarkably robust: six
spin interactions would be required to induce a term of
the form of Eq. (5). In Er2Ti2O7 (and indeed most other
rare earth pyrochlores), this is entirely negligible [14][19].
Spin-lattice coupling may generate effective four-spin in-
teractions [20], which also cannot split the degeneracy.
This leaves only fluctuations – i.e. ObD – to determine
the splitting coefficient c.

Local minimum: By expanding about the degenerate
states described by Eq. (2), we find that for arbitrary
(symmetry preserving) exchange parameters, the states
in Eq. (2) are extrema of the free energy (see Supp. Mat.
[4]). Whether or not they are global minima, i.e. whether
or not they constitute ground states of the problem, de-
pends on the parameters Jµνij . We now proceed to the
extraction of the latter from experiment, and lift any po-
tential suspense: for parameters relevant to Er2Ti2O7,
these are the lowest-energy states.

Er2Ti2O7 Hamiltonian: The effective S = 1/2 de-
scription applies to Er2Ti2O7 below about 74 K [8, 21].
Nearest-neighbor exchange dominates, for which the
Hamiltonian takes the form [17]
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∑
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where the sans serif characters Sµi denote components of
the spins in the local pyrochlore bases, where γ is a 4×4
complex unimodular matrix, and ζij = −γ∗ij [17]. Jzz,

J±, Jz± and J±± are related to the Jµνij (for nearest-

neighbor i and j) through basis rotations, and the re-
sulting linear combinations between the said parameters,
as well as the explicit expression of γ and the local bases
used in Eq. (6) are given in the Supp. Mat. [4].

To determine the four exchange constants and the two
components of the g-tensor specific to Er2Ti2O7, we fit
inelastic neutron scattering data with the structure fac-
tor obtained from linear spin wave theory in high field
applied to the Hamiltonian Eq. (6). This method was
described at length in Ref. 17 (esp. in its Appendix
C). Experiments were carried out on a single crystal of
Er2Ti2O7 grown at McMaster University by the floating
zone technique [22]. Inelastic neutron scattering by the
time-of-flight method was performed at the NIST Center
for Neutron Research using the Disk Chopper Spectrom-
eter [23]. The incident wavelength of 5 Å afforded an
energy resolution of 0.09 meV. Two orientations of the
crystal were used such that the vertical axes, i.e. the
crystallographic directions parallel to the applied field,
were [11̄0] and [111]. Using two field orientations allowed
an exceptionally comprehensive study of the high-field
spin-wave spectra. Furthermore, the understanding of
the zero-field spectra from the ordered state was also
enhanced by access to the two inequivalent scattering
planes normal to the field directions. In all color con-
tour plots herein, the last two panels represent scatter-
ing within the plane normal to [111]. All others include
scattering vectors normal to [11̄0].

Spin wave spectra arising in the polarized quantum
paramagnetic state at H = 3 T and T = 30 mK were
fit to the general anisotropic exchange model of Eq. (6)
by matching the dispersions in several directions us-
ing a least squares method. The full structure factor
S(Q, ω) was not fit to the data, but followed directly
from the Hamiltonian extracted from the fit to the dis-
persions. Within the linear spin wave approximation and
the nearest-neighbor model, we find gz = 2.45±0.23 and
gxy = 5.97± 0.08 (Ref. 12 finds gz = 2.6 and gxy = 6.8),
and in 10−2 meV

J±± = 4.2± 0.5, J± = 6.5± 0.75, (7)

Jzz = −2.5± 1.8, Jz± = −0.88± 1.5 .

Note that these parameters include the nearest-neighbor
component of the dipolar interactions, and that weaker
further neighbor components cannot break the U(1) de-
generacy, as shown above.

The above parameters Eq. (7) place Er2Ti2O7 in a re-
gion of the Jzz − J± − Jz± − J±± phase diagram far
from spin ice. Notably, in sharp contrast to Yb2Ti2O7

[17], the interactions J± and J±± involving the local XY
components of the spins are dominant. Here conven-
tional magnetic order is expected at low temperature [24],
and Curie-Weiss MFT is a good starting point. Within
the latter, we obtain the U(1) degenerate manifold as
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FIG. 1. The measured S(Q, ω) at T = 30 mK, H = 3 T sliced along several directions. The first five columns show S(Q, ω)
in the HHL plane, with the field applied along [11̄0], while the last two columns show S(Q, ω) for the field along [111]. Top
row: measured S(Q, ω). Bottom row: calculated S(Q, ω), based on an anisotropic exchange model with six free parameters
(see text) that were extracted by fitting to the measured dispersions.

the zero-field ordered states. Other predictions of MFT
compare well with experiment. MFT predicts a contin-
uous ordering transition at TMF

c = 2.3 K which implies
a fluctuation parameter f = TMF

c /Tc ≈ 2.1, given the
experimental transition temperature Tc = 1.1 K [11].
This parameter is much smaller here than in typical sys-
tems with strong fluctuations (c.f. f = 13 for Yb2Ti2O7

[17]). Likely f 6= 1 can be attributed to the usual ther-
mal fluctuation effects neglected in MFT. The zero tem-
perature field-induced transition (for a 〈110〉 field) with
HMF
c = 1.74 T, agrees perfectly with the experimental

value Hc = 1.7± 0.05 T [25].
Zero-point fluctuations: Neglecting the tiny six

spin couplings, only zero-point quantum fluctuations can
break the degeneracy of a clean crystal at low tempera-
ture. We show below that they do, though weakly, find
the preferred states, and quantitatively estimate the en-
ergy splitting of the degenerate manifold.

In the spin wave approximation, the energy of the zero-
point fluctuations per unit cell is given by

εsw0 = V −1BZ

4∑
i=1

∫
k∈BZ

ωik/2, (8)

where the sum runs over the four spin wave modes (see
Ref. 17), and where VBZ is the volume of the Brillouin
zone. The spectrum ωik of states described by Eq. (2)
depends on the angle α (the structure factor is shown for
different values of α on Fig. 8 of the Supp. Mat. [4]);
Therefore εsw0 depends on α as well. Performing the in-
tegration in Eq. (8) numerically for different values of
the phase α, we indeed find that zero-point fluctuations
break the U(1) degeneracy, and that the six equivalent
values α = nπ/3 (n = 0, 1, . . . , 5) are the minima of εsw0
as illustrated in Figure 2. The energy splitting fits well,
up to a constant, to εsw0 = −λ/2 cos 6α (c = 32Nu.c.λ in
Eq. (5) at T = 0, where Nu.c. is the number of unit cells),
with λ = 3.5 × 10−4meV. The six α = nπ/3 states are
equivalent, i.e. related to one another by cubic symme-
tries, but differ in the absolute orientation of the spins.
A zero-field cooled sample would be expected to form a
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FIG. 2. Zero-point fluctuation energy εsw0 in the classically
degenerate manifold parametrized by α. The peak-to-peak
energy is λ ≈ 3.5 10−4 meV.

multi-domain state with an equal volume fraction of each
state. Indeed, we find that an equal superposition of the
spectra of all six domains compares well with the experi-
mental zero field neutron spectrum (see Supp. Mat. [4]).

Implications: The first prediction of the ObD cal-
culation is a definite set of six zero-field ground states,
with α = nπ/3, selected by the positive coefficient λ.
These are exactly the ψ2 states identified in Ref. 8. Gen-
eral symmetry arguments predict either these ψ2 states
or the alternative sequence that would be selected were
λ < 0, with α = π/6 + nπ/3, which are denoted ψ1

states in Ref. 8. The crucial experiment to distinguish
the two was already noted in the latter reference and in
Ref. 26: a magnetic field applied along 〈110〉 to a zero-
field cooled sample should lead, due to domain alignment,
to a sharp increase of the (220) Bragg peak intensity for
the ψ2 states, but a sharp decrease of intensity for the ψ1

states (see Supp. Mat. [4]). A sharp increase is consis-
tently observed in several experiments [8, 11, 26]. Here –
see Figure 3– we make an extensive comparison of theory
(Supp. Mat. [4]) to experimental intensity versus field
at five Bragg peaks including (220), which gives strong
evidence for the correctness of the ψ2 ground state and
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the Hamiltonian parameters [27]. The ψ2 state was also
found by a sophisticated neutron spherical polarimetry
study [10].
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FIG. 3. Evolution of the Bragg peak intensities with a field
H ‖ [1̄10]. The experimental data points from Ref. 11 are
overplotted on the theoretical curves (the overall vertical scale
of experiment was adjusted by hand) obtained when all six
domains occupy an equal fraction of the volume in zero field.
The experimental values for (111) and (113) are suppressed by
instrumental complications, which are partially compensated
for here by a multiplication factor of 1.3 (see Supp. Mat. [4]
for more details). The dashed vertical line shows the critical
field HMF

c = 1.74 T obtained within MFT.

The second consequence of our ObD scenario is the
existence of a pseudo-Goldstone mode which acquires a
small gap at low temperature. It is important to empha-
size that the exchange Hamiltonian in Eq. (6) has only
discrete (point group) symmetries, so the appearance of
a Goldstone-like mode should be surprising! Though sur-
prise has been expressed only recently [15], the existence
of such a mode is apparent from multiple reports of a
large T 3 low temperature specific heat [8, 11, 13, 28, 29]
in Er2Ti2O7. The pseudo-Goldstone mode is also explic-
itly visible in our zero field inelastic neutron scattering
spectra. One can estimate the specific heat by Debye

theory, CT
3

V = 4Nu.c. σ T
3, where Nu.c. is the number of

unit cells in the system, and

σ =
k4B π

2 a3

120 v3
. (9)

Here a is the usual cubic lattice spacing, and v is the
geometric mean spin wave velocity (see Supp. Mat.
[4]). Using the theoretical value for v one obtains σth ≈
3.6 J ·K−4 ·mol−1. The experimental value from Ref. 11
(extracted in the Supp. Mat. [4]) is σexp = 4.6 in the
same units, comparable with theory.

Evidently the gap is not visible in current experiments.
We now estimate it using field theory. Consider the ef-
fective (Euclidean) action of a system at T = 0 with slow

space and time variations of the angle α:

S =

∫
d3r

vu.c.
dτ

[∑
µ

κµ
2

(∂µα)
2

+
η

2
(∂τα)

2 − λ

2
cos 6α

]
,

(10)
where vu.c. is the volume of the unit cell, and the param-
eters κµ, η are obtained from spin wave theory (see Supp.
Mat. [4]). Expanding the cosine above, we find that the
gap ∆ to the spin waves is

∆ =
√

18λ/η =
√

27λ (J± + Jzz/2) ≈ 0.02 meV. (11)

This is below the 0.09 meV resolution of the inelastic neu-
tron scattering data reported in Ref. 11, but is certainly
experimentally accessible. The gap should also be mani-
fest in a crossover from T 3 to activated magnetic specific
heat for T . ∆/kB (see Supp. Mat. [4]). A nuclear
Schottky anomaly below 200 mK [28] makes a direct ob-
servation challenging, but extrapolation of specific heat
data from Ref. 11 does suggest a gap of approximately
the right magnitude (Supp. Mat. [4]).

From Eq. (10), one may also extract the lengths ξµ =√
κµ/(18λ), which describe the width of domain walls

between symmetry-related ψ2 states. We obtain ξ1 =
1.86 a = 18.71 Å and ξ2 = 2.44 a = 24.55 Å for Er2Ti2O7.
Confrontation of domain wall theory with experiments
will be addressed in a future publication.

Relation to prior theoretical work: Early theoretical
work had conjectured the existence of order-by-disorder
in Er2Ti2O7, based upon a classical Heisenberg model
with easy-plane single-ion anisotropy, which exhibits an
extensive degeneracy [8, 9] very different from the U(1)
degeneracy discussed here. This model is microscopically
inaccurate (as noted in Refs. 14 and 26), and moreover
the extensive degeneracy obtained within it is not ro-
bust. The use of a general Hamiltonian, the finding of
the robust degeneracy, and the extraction of the param-
eters of Er2Ti2O7 are essential ingredients for the new
and definitive conclusions we draw in this work.

Discussion: The measurement of the gap via neu-
trons or thermodynamics is a remaining experimental
challenge, but higher resolution experiments are needed.
Neutron scattering data on field-cooled materials which
are expected to contain single domains, i.e. single α’s,
would allow a wonderful synergy of theory and experi-
ment and show proof of high control on this interesting
material. The interesting field evolution of the lineshape
of the Bragg reflections [11] will be returned to in a fu-
ture publication. We have achieved a conclusive and de-
tailed understanding of the magnetism of Er2Ti2O7, and
most importantly shed light on a material where order-
by-disorder physics is unambiguously at play.

After completion of this paper, a theoretical preprint
[30] appeared, which reaches some of the same conclu-
sions regarding Er2Ti2O7.
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